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Preface

This compendium on preliminary design of turbopumps and related machinery pertains primarily
to the pumps used in connection with large liquid-fuel rocket engines. As a design study, its general
purpose is similar to that of the NASA monographs on space vehicle design criteria. However, while
these monographs are primarily intended to record established design practices in their respective
fields, this compendium is intended to contribute also to future developments and improvements in
this and related fields of turbomachinery.

In the title of this compendium, the word ‘“‘preliminary’’ denotes the initial phases of design, where
the general shape and characteristics of the machine are to be determined. Therefore this
compendium does not apply primarily to machines for which the general form and method of design
are well established, for example, axial-flow turbojet engines. It also does not apply to the final
analysis of an approximately established design, usually carried out by specialists in such fields as
fluid mechanics, stress analysis, rotor dynamics, and the like, where one must employ much more
accurate methods than presented in this compendium.

Thus the word ‘‘design’’ in the title denotes primarily the initial, creative or form-finding phases of
the design process. The design engineer responsible for these early phases cannot be expected to be an
expert in all the special fields of knowledge involved in the design process, but should have a
dependable, although simplified, knowledge of these fields to the extent to which they determine the
general form and characteristics of the machine to be designed and developed. While the subsequent
detailed analysis by specialists may call for improvements in the initial design, this analysis can rarely
be allowed to change the fundamental design characteristics, since that would probably lead to major
delays or compromises. Therefore the initial design must be dependable in its broad, overall
characteristics, and accuracy in detail cannot be its primary objective. It is to this initial design phase
that this compendium is intended to make a modest contribution.

The first requirements for achieving dependability in the initial design process are physical
simplicity and transparency of reasoning. Furthermore it is desirable to converge as early as possible
to a fairly definite geometric form of the machine to be developed, because major errors are often
visible by geometric inconsistencies or abnormalities. Obviously the experience of the engineer in
designing forms that are desirable with respect to hydrodynamic or mechanical considerations is of
major importance and is, therefore, cultivated in this compendium as much as possible.

The relation between the prescribed operating conditions (rate of flow, pump head, speed of
rotation, etc.) and the geometric form characteristics of the machine, such as its flow Cross sections,
is particularly simple and dependably determined for incompressible fluids. Therefore it should be
understandable that the pumping part of the turbopump has received primary attention, since it is
concerned essentially with incompressible fluids. However, the importance of the driver, usually a
gas turbine, makes it necessary during the preliminary design phase to consider also the flow
principles of compressible fluids. These compressible flow principles must also be considered in cases
where the pumped fluid changes its volume significantly.

As much as possible, the simplicity and reliability of incompressible flow considerations are
retained by treating the mechanics of compressible fluids as a departure from the theory of
incompressible fluids. This is accomplished by changing the fluid volume per unit of mass as a
function of a dimensionless velocity of the compressible fluid flow (suggested by Prandtl and
Busemann). Although one must expect objections to this treatment from a broader, scientific point
of view, its simplicity justifies its use to meet the limited objectives of this compendium, not to
mention the authority of the authors just cited.
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Because of the inherent theoretical simplicity of axial-flow machines compared with radial-flow
machines, axial-flow machines are treated in the theoretical background (ch. 2) as well as in the
description of the design methods (ch.3) before the older radial-flow machines. The treatment of
axial-flow machines departs markedly from the classical approach, which describes primarily the
fluid mechanical action of various standard vane sections when arranged as a straight system of
parallel vanes. This approach is inadequate for the design of vane systems exposed to the danger of
cavitation. This occurs because the classical vane shapes in pumping (i.e., retarding) vane systems
usually have the greatest vane pressure differences near the low-pressure inlet side of the system and
lead to unacceptable pressure reductions below the inlet pressure of the (rotor) vane system. The so-
called mean streamline method for the analysis of experimental cascade data (ch. 2) as well as for the
design of axial-flow cascades with prescribed vane pressure distributions (ch. 3) has overcome this
cavitation problem in axial-flow vane systems. The axial-flow-compressor designer will find it
interesting to observe thai the vane shapes developed in this manner, in order to minimize cavitation,
have a striking resemblance to those used in axial-flow compressor or fan stages for high, often
supersonic, inlet Mach numbers of the relative flow. There compressibility effects subject the vane
surface pressures and velocities to the same restrictions as the danger of cavitation in axial-flow
pumps.

The design limitations to prevent separation or stall, first recognized and described with respect to
radial- and axial-flow machines in 1928 and 1934, were most clearly established in the late forties on
the basis of axial-flow cascade test data. Therefore this subject occupies an important place in this
compendium in the treatment of axial-flow machines and has led to a uniform presentation of the
various separation criteria or diffusion factors suggested since 1928.

The fundamental difference between radial- and axial-flow turbomachinery rotors emphasized in
this compendium is the inherent vorticity of the relative tlow in radial-flow rotors. Equally inherent
and important is the fundamentally three-dimensional form of the flow and vane shape between the
axial inlet and the radial discharge of the rotor of large radial-flow pumps. It is interesting that
already in the thirties (and before) overall pump efficiencies of about 90 percent were reliably and
repeatedly achieved with pumps having the previously mentioned complications, almost as
consistently as with hydraulic turbines of essentially the same type. In spite of the fact that these
favorable results were obtained mainly on empirical and geometric bases, it seems necessary that
these pumps and their design principles receive careful attention in this compendium (ch. 4).

Scientific curiosity as well as occasional disappointment in the performance of pumps designed by
means of the aforementioned principles have led to investigations in search of some simple rationale
for the empirical design methods developed during or before the thirties. These efforts were carried
out first with respect to separation or stall limits of rotor vane systems and later with regard to design
for a prescribed pressure distribution along the rotor vanes. While these attempts are as yet not
supported by test results, they are outlined in chapter 4 in the hope that this presentation will
stimulate further work toward a firmer basis for the design of radial-flow turbomachinery rotors.

Knowledgeable readers may be disappointed in the mathematically rather elementary treatment of
theoretical considerations presented in this compendium. This type of treatment may be regrettable,
but is unavoidable because of the primarily physical and geometric orientation of this writer, whose
experience in the field of turbomachinery design was obtained chiefly at the drawing board and in the
shop serving the development of turbomachines. As a consequence, this compendium is intended
primarily to meet the needs of the design engineer who is concerned with the practical development
problems of turbomachinery and to encourage him in this undertaking. The reader is not required to
have advanced mathematical methods at his command.

It may be of interest that in recent years some of the design operations described in this
compendium have, on the basis of these elementary descriptions, been translated into computer
language. This important step has been fairly well completed for the design of axial-flow vane
systems for pumps by the mean streamline method. It has also been extended to the design of pump
rotors with an axial inlet and a more or less radial discharge. The Applied Research Laboratory of the



Pennsylvania State University can give information on these developments. However, these
computer-aided design methods have not been included in this compendium. The design methods
described here can be, and have been, carried out with fair success by means of the drawing board
and small hand calculator alone.

This writer is greatly indebted to NASA for sponsoring this work and for providing the needed
critical reviews. In particular, the writer would like to thank Mr. Melvin J. Hartmann, Director of
Aeronautics at the Lewis Research Center, for encouraging the writing of this compendium and,
together with Mr. Calvin L. Ball, for supporting its completion. In the beginning the technical review
was directed effectively by Mr. Cavour H. Hauser and carried out by Mr. Werner R. Britsch. Later
the technical review was continued by Mr. Mark R. Laessig, Mr. Michael J. Pierzga, and Mr. Donald
M. Sandercock. These reviewers made constructive suggestions and improved many of the technical
descriptions. The general editorial work was done by Ms. Margaret J. Mallette, whose careful review
resulted in numerous improvements in the form of presentation. This compendium could not have
been completed without the constructive collaboration of the NASA staff members just mentioned
and probably of others whose contributions did not come to the direct attention of this writer. To aid
in future developments of the work reported here, constructive suggestions and corrections by
readers and users of this compendium will be very much appreciated.

George F. Wislicenus
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Units of Measurement

The design and operating characteristics of turbomachines developed throughout this compendium are
generally expressed in dimensionless form. To these one may, of course, apply any consistent system of
units. For those cases where a dimensional form is used for specific reasons, both International System
(SI) units and U.S. customary units may be observed. The author endorses the primary use of SI units.
Infrequently, however, U.S. customary units appear in illustrative examples, on figures of general
characteristic curves, and as alternative units, The U.S. customary units are retained in order to ease the
understanding for those accustomed to this system of units and to relate certain figures to the original work
which supports them. The following discussion makes some comparisons of the two unit systems.

The units used in the International System are

length (L) measured in meters (m)

time (T) measured in seconds (sec)
force (F) measured in newtons (N)
mass (M) measured in kilograms (kg)

In contrast, the traditional units of measurement customarily used in the United States of America are

length (L) measured in feet (ft)

time (T) measured in seconds (sec)
force (F) measured in pounds (Ib)
mass (M) also measured in pounds (1b)

It is immediately evident that the U.S. customary system has a serious weakness in that it uses the same
unit (pound) for force as well as for mass. The original metric system had the same weakness, because
it used kilogram for mass as well as for force. (This weakness was eliminated in the International System
by introducing a new unit (newton) for force.)

The common weakness of the U.S. customary system and the original metric system permitted, for over
a hundred years, the use of the concept of head (in German Fallhoehe or Foerderhoehe) with the dimension
of a length for the ability to do or to absorb hydrodynamic work, measured in force times length. The concept
of head was obviously suggested in the field of hydraulic engineering to describe a difference in elevation
of the free water levels on the two sides of a hydraulic installation such as a powerplant with its penstocks.
This physical justification of length as the dimension of head can be supported algebraically by writing
this dimension in the form (ft)(Ib)/Ib or (m)(kg)/kg and cancelling Ib against Ib or kg against kg, ignoring
the fact that in both cases one cancels the dimension of a force against the dimension of a mass. This traditional
mistake means that mass is measured by a force, specifically its weight, which is still usually the simplest
Wway to measure mass rather than by comparison with a standard mass.

In the International System, the equivalent of head has the dimensions of force times length (work) per
unit of mass, which is (N)(m)/kg. Since force equals mass times acceleration, one can write the equivalent
of head in the International System in the form

(mass)(acceleration)(length)/mass
or, expressed in unit abbreviations,
(kg)(m/secz)(m)/kg = m%/sec?
This means the equivalent of head in the International System has the dimension of a velocity squared.
In order to avoid a conflict between the International System and the traditional systems mentioned
previously, this compendium retains the term and concept of head (denoted by the symbol H or h) with
the dimension of a length. However, this concept is always used in combination with the standard gravitational

acceleration, g, = 9.81 m/sec? in the original metric system or g, = 32.2 ft/sec? in the U.S. customary
system. It is immediately clear that the product Hg, has the dimension of a velocity squared, that is, the
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same dimension as the equivalent of head in the International System (provided H has the dimension of
a length). The product Hg, (or hg,) has also the same physical meaning as required in the International
System, insofar as the standard gravitational acceleration g, is obviously the ratio of a unit of weight to
a unit of mass. Therefore muitiplication by g, changes mechanical work per unit of weight to mechanical
work per unit of mass. The use of the product Hg, (or hg,) for work per unit of mass, in place of a single,
new symbol, is justified mainly to retain the relation to the traditional concept of head (H or h) and to avoid
confusion with other symbols already in use. (One may expect that any future edition of this compendium
will depart from this practice of its first edition.)

It may be well to mention here that capital H for head is used in this compendium for total or stagnation
head as measured by an upstream-pointing pitot tube, whereas lower case h is used for the so-called static
head as measured by a piezometer hole in a surface parallel to the flow (approximately). In connection
with compressible fluids, the same symbols are used in the same manner for stagnation and static enthalpy.

In closing this discussion on units of measurement, it is desirable to illustrate what are described previously
as consistent and inconsistent applications of units of measurement. The most common case of inconsistent
use of such units is the use of revolutions per minute (rpm) with cubic feet per second (ft*/sec) or (worse)
gallons per minute (gal/min) or the use of head (in ft) without multiplication by g,. These inconsistencies
are so common when using the U.S. customary system (particularly in the field of pump cavitation) that
this compendium uses the inconsistent value of suction specific speed in parentheses behind the consistent
(dimensionless) value in order to assist older engineers. The conversion of specific speeds from the consistent
(dimensionless) to traditional inconsistent values is given in sections 1.2.1 and 1.2.2 of chapter 1.

In this compendium, the speed of rotation of a machine is expressed in revolutions per second, which
is consistent with cubic feet per second, and head is expressed in feet times g,. Equally consistent with
these additional units would be radians per second as a measure of the rotation of a machine or shaft and
the conversion factor 2, which must be considered properly when dealing with the peripheral velocity.
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Symbols

Designations of units of measurement: length, L; mass, M; time, T; force, F=MLT ~2; temperature, t

A
A,B,C,.D

Alh
a

area

stations across or along streamlines; stations along contour or
any line

throat area of volute or diffuser (fig. 1-11)
axial width of rotating element (fig. 1-30)
acoustic velocity; velocity of sound

width of passage or impeller; width (or depth) of flow normal to
plane of flow considered; blade span normal to meridional flow

length of section line normal to meridional streamlines, and
coordinate along such a line (fig. 2-1)

width of impeller at outer periphery
Coriolis force
lift coefficient

lift coefficient referred to inlet velocity of vane system
or cascade considered

lift coefficient referred to vectorial mean wey or V,, of relative
inlet and discharge velocities of vane system

local vane surface pressure coefficient, usually Prer—p)/( Vge//Zgo)
specific heat at constant pressure in mechanical units

specific heat at constant volume in mechanical units

coefficient in eq. (1-42)

diameter or any representative linear dimension of machine or
characteristic linear dimension of system

diffusion factor (see eq. (2-70))

hub diameter

hub diameters at inlet and discharge, respectively, of axial-
flow rotor (fig. 1-20)

inlet diameter of pump or compressor rotor; inside diameter
of any turbomachinery rotor or vane system (figs. 1-7,
1-20, and 1-25)

local diffusion factor (see eq. (2-63))

outside discharge diameter (figs. 1-7 and 1-25)

specific diameter, D(g,H)1/4/Q1/2

twice distance of center of throat area from axis of rotation
(fig. 1-11)

vane distance normal to flow relative to given vane system;
generally, distance

distance between streamlines and distance from vane edges
to contour (see fig. 2-11)

normal vane distance near outside diameter of system

L2

L2

LT-!
L

F=MLT-2
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normal vane distance at place other than measurement
location of d,

modulus of elasticity
Froude number, U2/gD or V2/gD
force

axial force per unit span, i.e., force per unit span normal
to vane-to-vane extent of straight, two-dimensional
cascade (fig. 2-9)

circumferential force per unit span, i.e., force per unit span
in vane-to-vane direction of straight, two-dimensional
cascade (fig. 2-9)

force per unit span or unit distance normal to plane
of flow

frequency; frequency of vibration
acceleration of system as a whole
standard gravitational acceleration (of system as a whole)

total (static plus velocity) head; net pump work per unit
of weight of fluid

rotor head; total work per unit of weight of fluid,
exchanged between rotor and fluid

total (static plus velocity) head above vapor pressure at low-
pressure side of hydrodynamic rotor

static head; static pressure divided by weight per unit
volume of fluid

thickness of vane normal to the general direction of vane

enthalpy per unit weight in mechanical units; h=C,T in
thermal units

atmospheric or ambient pressure divided by weight per unit
volume of liquid

Busemann head correction factor (fig. 2-47)
Stodola head correction

static head above vapor pressure of liquid at low-pressure side of

turbomachinery rotor

vapor pressure of liquid divided by weight per unit
volume of liquid

moment of inertia of cross-sectional area
cascade-effect coefficient, defined by eq. (2-56)
heat-transfer coefficient

Ackeret separation or diffusion factor (eq. (2-62))
Wislicenus separation or diffusion factor (eq. (2-68))
lift (force)

characteristic linear dimension of system

length; chord length of vane

linear spacing between cavitation nuclei

moment, torque; bending moment

L

FL-2=ML-!T-2

F=MLT 2
FL-1=MT"2

FL-1=MT-2

FL-!'=MT-2
T—l

LT -2

LT-2
FLF-!=L

L

L

L4

tM -1

F=MLT -2

FL=ML2T -2



coefficient in eq. (2-93) determining direction of
straight line

section modulus, section moment of inertia 7 divided
by maximum distance from neutral axis

number of vanes; number of stages

number of cavitation nuclej per unit volume

exciting frequency of rotating system

dimensional specific speed referred to power (eq. (1-20))
number of revolutions per unit of time (sec)

linear coordinate normal to meridional streamlines
term in eq. (2-93) determining location of straight line
exponent between 0 and 1

distance between mean camber line and mean streamline
compressibility specific speed (table 1-I)

gravity specific speed (table 1-1)

basic specific speed (table 1-1)

vibration specific speed (table 1-1)

general form of specific speeds (table 1-II)

viscosity specific speed (table 1-I)

stress specific speed (table 1-I)

stress specific speed related to centrifugal stresses
distance An for unit lift coefficient (Cro=1)

power

Peclet number

pressure; static or local pressure

pressure difference

ambient or atmospheric pressure

gage pressure

partial pressure of gas in liquid

total (static plus velocity) pressure

vapor pressure

volume flow rate

parameter relating bending moment in beam to moments of

applied forces (eq. (1-102))
defined by eq. (2-61)
Reynolds number
radius of curvature of streamlines
gas constant; R=C,—C,
radius, distance from axis of rotation
radius of gyration, V7/4
radius normal to conical wall
suction specific speed
coordinate along given curve or contour
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absolute‘temperature

time

wall thickness

circumferential spacing of vanes

circumferential vane spacing at outer periphery

peripheral velocity of solid parts of machine (rotor)

peripheral velocity of solid parts at inlet or inside diameter
D; (figs. 1-7 and 1-20)

peripheral velocity of solid parts at outer diameter D,
(figs. 1-7 and 1-25)

peripheral velocities of solid parts at inlet and discharge,
respectively, of vane system (for axial flow U;=U,=U)

x-component of fluid velocity in Cartesian system X, ,2

absolute fluid velocity, i.e., velocity relative to stationary
parts of machine (whole machine being assumed stationary);
for propeller, velocity relative to propelled vehicle

absolute fluid velocity at inlet or inside diameter D;
(fig. 1-7)

absolute fluid velocities at diameter D; and at inlet and
discharge, respectively, of vane system (fig. 1-20)

meridional component of absolute fluid velocity in machine,
i.e., component parallel to radial and axial planes

meridional component of absolute fluid velocity at diameter
D; (fig. 1-7)

meridional component of absolute fluid velocity at diameter
Djand at inlet and discharge, respectively, of system
(fig. 1-20); if V,, is radially constant, Vi, ;1= Vin,1 and
Vm,i,Z = Vm,2

absolute fluid velocity at outer diameter D, (fig. 1-7)

fictitious velocity of ideal gas, reached by isentropic expansion
to zero pressure and zero absolute temperature

peripheral component of absolute fluid velocity in machine
change in peripheral component of absolute fluid velocity

peripheral component of absolute fluid velocity at diameter
D; (fig. 1-7)
peripheral components of absolute fluid velocities at

diameter D; and at inlet and discharge, respectively, of
system (fig. 1-20)

absolute fluid velocity at inlet to vane system at any
diameter (fig. 1-21)

absolute fluid velocity at discharge from vane system at
any diameter (fig. 1-21)

specific volume, volume per unit weight

y-component of fluid velocity in Cartesian system X, ,2
representative velocity listed in table 1-I11

weight

LT-!

LT-!

LT-!

LT!

LT !

LT !

LT !

LT-!

LT-!
LT-!

LT-!
LT-!
LT !

LT !

LT-!

L3F - 1 =L2T2M—1



Wy
W
)

Weo

X, 02

N

Q R R & &

load on beam per unit area

relative fluid velocity, i.e., velocity relative to rotating
parts of machine (rotor)

z-component of fluid velocity in Cartesian system x,y,2
relative fluid velocity at inner (or inlet) diameter D; (fig. 1-7)

relative fluid velocities at diameter D; and at inlet and
discharge, respectively, of vane system (fig. 1-20)

relative fluid velocity at outer diameter D, (fig. 1-7)

Stodola correction of peripheral component of relative
velocity at discharge of radial-flow rotors (fig. 2-48)

peripheral component of relative fluid velocity
relative fluid velocity at inlet to vane system (fig. 1-21)
relative fluid velocity at discharge from vane system
(fig. 1-21)
vectorial mean between incoming and discharging relative
velocities of vane system (fig. 1-21)
Cartesian coordinates

coordinate in vane-to-vane direction in straight cascade of
parallel vanes

index

coordinate designating a radial position, particularly close
to inside diameter of radial-flow system

coordinate in meridional (axial) direction in straight cascade
of parallel vanes

coordinate normal to surface, e.g., surface of cavitation void

number of vanes in Busemann diagram (fig. 2-47) and
accompanying relations

elevation; vertical coordinate

axial coordinate in cylindrical flow system

angle of attack

cone angle in fig. 1-37

Mach angle; sin e =a/V

angle of attack measured from zero-lift direction

angle between velocity vector relative to vane system and
meridional direction, except when applying to Busemann’s
results (fig. 2-47), when it is measured from peripheral
direction

vane angle measured from meridional (axial, radial) direction
circulation; I' = v, ds
circulation about a vane

ratio of specific heats; y=C,/C,; exponent for isentropic,
ideal gas changes

elastic deformation of solid parts
boundary-layer thickness
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elastic deformation of solid parts under influence of a
general acceleration g of entire system

vorticity

component of bound vane vorticity in meridional planes
(fig. 2-70)

meridional vorticity component, describing vorticity of flow in
surfaces of revolution normal to meridional flow (usually
circumferential flow)

circumferential vorticity component, describing vorticity of
meridional flow

efficiency

hydraulic efficiency, H/Hr for pumps and compressors,
Hr/H for turbines

angular coordinate in vane systems of turbomachinery
angle between ¢{. (fig. 2-70) and axial direction
change in direction of supersonic flow

angle between {, and resultant, bound vane vorticity { (fig. 2-70)

latent heat of vaporization

viscosity

kinematic viscosity, u/p

mass per unit volume

mass of fluid per unit volume

mass of structural material per unit volume
stress in solid parts

stress in solid parts induced by centrifugal forces
stress in solid parts induced by fluid forces
Thoma cavitation parameter, Hg,/H

cavitation number, (p,or—p)/(p VEe//Z)
cavitation number with respect to desinent cavitation

cavitation number resulting from combined effects of average
(smooth) boundary curvature and boundary roughness

cavitation number of local surface irregularity (roughness)
alone

shear stress
vane thickness in circumferential direction
flow coefficient, V/U

angular coordinate of polar coordinate system and of radial-
flow vane system

inclination of meridional streamline (stream surface) against
axial direction

head coefficient, 2g,H/ U2
angular velocity
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Subscripts:

a

-~

X ¥,2

axial

average

desinent cavitation

general acceleration of system as a whole
hub diameter

inlet diameter of pump or compressor rotor; inside diameter
of any turbomachinery vane or volute system

incipient cavitation

boundary layer

liquid

meridional; location in axial and radial plane

maximum

minimum

reference of any type; free stream; outer diameter of
turbomachinery vane or flow system

zero velocity (stagnation condition) except in V,

undisturbed local conditions on smooth surface or parent body

resultant

radial

relative

Stodola correction of flow discharging from radial-flow rotors

suction; low-pressure side of machine or rotor

direction s along contour

static

suction and vapor pressure

throat area of volute or vane diffuser

peripheral component or direction

vane or blade

vapor

vane-to-vane (circumferential) direction in straight cascade
of parallel vanes

directions of Cartesian coordinates X2
radial direction

axial (meridional) direction in straight cascade of parallel
vanes (normal to x-direction)

elevation; vertical direction

axial direction (or component) in cylindrical flow system
(three-dimensional axial-flow system)

unity; first in series of stations; inlet to vane system

unit width or depth normal to plane of flow considered,
unit span

second in series of stations; discharge from vane system
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Chapter 1

Survey of the Field of Turbomachinery

in Dimensionless Form

1.1 Principles of Similarity
Considerations in Turbomachinery

1.1.1 Introduction

Any presentation of the design of machinery or
structures naturally deals with the relation between
the design and the prescribed or expected behavior
or performance of the machines or structures
considered. Thus a survey of a field of machinery or
structures is a survey of designs in relation to the
behavior or performance of the machines or
structures. In this compendium, the behavior or
performance is called here the performance or
operating characteristics of the machine or
structure. This chapter, therefore, presents a survey
of the design and performance or operating
characteristics of turbomachinery.

The term design form (or form of design) means
the geometric form of design, whereas the term
design (used as a noun) includes, besides the design
form, the structural material and anything else that
has an influence on, or relation to, the performance
or operating characteristics of the machine.

Furthermore all geometrically similar machines
or structures of different absolute size or
dimensions are considered as having only one and
the same design form, so that mere scaling up or
down of a machine or structure, without changing
the ratio of its various dimensions relative to each
other, is not considered changing the design form.
With this definition, a survey of design forms is
automatically dimensionless, as every single item of

the survey comprises all geometrically similar
machines or structures concerned, irrespective of
absolute size.

The term scaling is applied to the linear
dimensions of a structure or machine, meaning that
all linear dimensions are changed by the same ratio,
so that geometric similarity is preserved. The term
scaling may apply also to quantities other than
dimensions, for example, to velocities and forces. If
in a fluid the magnitudes of all velocities and of
their components are changed by the same ratio, the
velocity field is said to be scaled, and the flow is
considered to remain similar. An exactly analogous
statement can be made with respect to forces.

It is well known that geometrically similar
machines or structures of different sizes do not in
general have the same performance or operating
characteristics. Obviously turbomachines such as
pumps or turbines generally have different rates of
flow if they have different absolute dimensions or
velocities, although they may be geometrically
similar (i.e., they may have the same design form).
However, if the rate of flow Q were made
dimensionless by division by a velocity V times an
area (the square of a linear dimension D), then all
machines of the same design form might have the
same dimensionless rate of flow Q/VD2. It is
shown later in this section that this is not always
true for turbomachines. For this to be true, both the
machines and the flow in the machines would have
to be similar. Thus a survey of a field of machines
or structures is dimensionless only if both the design
forms and the performance or operating charac-
teristics are related by similarity considerations.
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Considerations of this type are certainly not
limited to turbomachines. For instance, such
considerations are regularly used in the field of
general fluid mechanics. The flow over an airplane
wing or airfoil is an example. Geometrically similar
airfoils generally do not produce the same lift,
which obviously depends on the absolute size of the
airfoil, the velocity of flow, and the angle of attack
a (see fig. 1-1). Only at the same angle of attack can
the flow over an airfoil be similar and permit the
application of similarity considerations.

The performance (lift L) of an airfoil is usually
expressed in dimensionless form by the so-called lift
coefficient

L
Cr=——
L™ evir2a
or (1-1)
_ eV
L=C "

This relation expresses the fact that a dynamic
force such as the lift L must be proportional to the
mass per unit volume p, to the square of the velocity
of flow V, and to a characteristic area A. In the
usual definition of C , this area A is the area of the
airfoil measured normal to the lift force L.

If the flow over geometrically similar airfoils is
indeed similar, their lift coefficients have one and
the same value (dimensionless performance or
operating characteristics are the same). It should be
mentioned that similarity of flow requires not only
the same angle of attack but also similarity with
respect to viscosity (Reynolds number), compress-
ibility (Mach number), cavitation (cavitation
number), and gravity (Froude number).

This relation among the dimensionless
performance characteristics (lift coefficient), the
design form (dimensionless shape of the airfoil),
and the form of flow (angle of attack), which is the

Figure 1-1.—Flow-deflecting vane or airfoil showing effect of
angle of attack o on form of flow.

essence of the application of similarity con-
siderations to the design of machines or structures,
is discussed in this chapter with respect to
turbomachinery.

If both the aerodynamic or hydrodynamic
characteristics and the mechanical performance
characteristics (such as the load carrying capacity,
deflection, etc.) are to be considered, then
mechanical characteristics of the solid material
(such as allowable stress and modulus of elasticity)
have to be taken into account together with the
structural form of the element considered (e.g., the
wing). These must then be related to corresponding
performance characteristics of the structure or
machine.

The simplest relation of this type obviously is the
one which states that the internal forces per unit
area, called stresses, are under similar conditions
proportional to the forces per unit area applied to
the structure, such as aerodynamic or hydro-
dynamic pressures.

In other cases, the forces applied to the structure
(such as gravitational forces) are proportional to its
volume or weight, so that the applied force is
proportional to pg,D3, where D is any repre-
sentative linear dimension of the system. If
compared with dynamically applied forces, which
are proportional to p¥2 D2, the ratio of dynamic to
gravitational forces is pV2D2/pg,D3 =V?/g,D,
which is the square of the Froude number.

This extension of similarity considerations into
the field of mechanics of solids applies, of course,
also to the field of turbomachinery and is discussed
in detail in sections 1.2.3, 1.3.3, and 1.3.4.

1.1.2 Basic Similarity Considerations on
Turbomachinery

To apply similarity considerations to turbo-
machinery, it is necessary to describe first the most
essential characteristics whereby turbomachines can
be distinguished from other types of machinery. A
more detailed description of turbomachines is
developed throughout this compendium.

Turbomachines are fluid-handling machines,
such as turbines, centrifugal- or axial-flow pumps
or compressors, and propellers. A turbomachine
comprises one or more rotating elements equipped
with the means, usually vanes, whereby forces are
transmitted from the rotating elements to the fluid
flowing through or past these elements. It is
essential that there is at all times at least one



significant open passage from the inlet to the
discharge of the machine. This requirement
distinguishes a turbomachine from positive-
displacement (rotating) machinery. The force
action exerted by the elements of a turbomachine
must, therefore, be fluid dynamic, in contrast with
those acting in positive-displacement machinery.
This force may be either of the inertial type, that is,
generated according to Newton’s law of motion,
where force equals mass times acceleration, or of
the viscous type, obeying Newton’s law of viscous
shear forces or the laws of turbulent shear forces in
fluids. It is not certain that machinery using
primarily viscous shear forces should be included
under the term turbomachinery. This compendium
is concerned only with turbomachinery in which the
force action between the rotating elements and the
fluid is primarily, but not exclusively, of the type in
- which force equals mass times acceleration. All
considerations are based on this assumption.

Another consequence of the preceding
description of turbomachinery results from the fact
that there is always at least one open fluid passage
between the inlet and the discharge of the machine,
namely, that there is no rigid relation between the
motion (speed of rotation) of the machine and the
rate of flow through the machine. In contrast, the
rate of flow of positive-displacement machinery is
proportional to the speed of the machine (within the
limits of changes in internal leakages and of the
eifects of compressibility of the fluid). With
turbomachinery, on the other hand, substantial
departures from this proportionality between the
rate of flow and the speed of the machine are to be
expected. In fact, the rate of flow has no rigid
relation to the rotative speed of the machine. In
order to analyze this situation further, it is
necessary to define more closely the concept of
similarity of flow.

Similarity of flow in two geometrically similar
machines or other flow structures is defined by the
condition that the velocities of flow at all pairs of
geometrically similarly located points in the
machines being compared have one and the same
ratio to each other throughout the two machines
and have the same direction relative to the machines
(i.e., that the proportionality of all velocities
applies also to all directional components of the
velocities relative to the machines compared) (see
fig. 1-2).

For the designer, the most useful application of
this definition is that the flow velocity diagrams at
geometrically similarly located points in the
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Figure 1-2.—Similarity of flow, shown by similar velocity
diagrams at any pair of similarly located points A and a.

machines must be geometrically similar for the two
machines compared (fig. 1-2). In fact, the
application of this definition may be considered as a
valid test of similarity. This, of course, applies also
to three-dimensional flow conditions and velocity
diagrams.

The accuracy of the foregoing definition depends
on the accuracy with which the fluid velocities are
defined. First, the flow through turbomachinery is
known to be unsteady, that is, to fluctuate at
frequencies related to the frequency of the vanes of
the rotating systems passing the stationary vanes or
other stationary parts of the machine. Thus any
fluid velocity quoted without reference to time is
necessarily time-averaged over a reasonable length
of time compared with the period of fluctuations.
Arriving at this average is not a simple problem, as
it may involve an averaging of the rate, momentum,
or energy of the flow. Fortunately, for small
fluctuations, these averages do not differ a great
deal from each other. Second, turbulent velocity
fluctuations have to be disregarded, because their
random nature makes a rational process of
averaging impractical at present. Usually a mean
velocity has to be defined by the time-averaged rate
of flow through a limited, that is, finite, cross
section of the flow field.

The problem of similarity of flow conditions may
best be described by the following question (ref. 1,
p. 6): Under what conditions will a geometrically
similar flow of liquid or gas occur around or within
geometrically similar boundaries? The general
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answer to this question has two parts. First, as
stated by the aforementioned condition of
similarity of flow, for a single airfoil in an infinitely
extended straight stream, the airfoil must be
geometrically similar and the angle of attack must
be the same. Second, the forces acting on the fluid
must be similarly arranged, because otherwise the
fluid would be forced off the geometrically similar
path in spite of the similarity of the fluid passages.

Similar velocity distributions are accompanied by
similar force distributions only if the forces have
the same relation to the fluid velocities at all
corresponding points of the systems compared.
This is the case if mass (or inertia) forces are the
only forces considered. It follows that, under this
condition, geometrically similar flow boundaries
and inflow conditions always produce geometrically
similar flow conditions.

In the presence of forces other than inertia,
similarity of flow may still be maintained if the
forces change proportionally to the inertial forces,
for example, if viscous forces are kept proportional
to inertial forces by maintaining the same Reynolds
number in the machines compared.

If the flow boundaries have no motion relative to
each other, inertial forces only do not constitute
any significant problem, as geometrically similar
flow boundaries with similar inflow and discharge
conditions (i.e., similar flows at infinity) always
lead to similar flow, as defined previously.
Therefore similarity considerations in general fluid
mechanics usually deal with the departures from
incompressible flow controlled by inertial forces
only.

In the field of turbomachinery, one is confronted
with an additional condition of similarity when
dealing exclusively with inertial forces. This
condition is most easily understood on the basis of
the similarity requirement of having similar fluid
velocity diagrams at all similarly located points in
the machines compared. In turbomachines, these
velocity diagrams contain meridional fluid
velocities V,, which are dependent primarily on the
rate of volume flow Q divided by a representative
area D2. The same velocity diagrams also contain
peripheral velocities of the rotating solid parts U
which are proportional to a representative diameter
D times the speed of rotation n. Therefore, to
satisfy the requirement of similarity of velocity
diagrams, it is necessary that the so-called flow
coefficient ¢=V,,/U have the same value at
similarly located points in the machines compared.
This necessary condition of similarity can also be

made to be a sufficient condition by replacing the
meridional fluid velocity V,, by any fluid velocity
in the machine V, which leads to an almost self-
evident condition of similarity: fluid velocities V'
and peripheral velocities U of the solid parts must
have the same ratio at all similarly located points in
the machines compared. This condition at similarly
located points is expressed by the equation

Y =constant 1-2
o= (1-2)

and is called the kinematic condition of similarity of
flow in turbomachines.

The flow coefficient ¢=V,,/U assumes a very
definite physical meaning if applied to a point
where the absolute velocity V has no peripheral
component, as shown in figure 1-3 for the inlet. In
this case, ¢ =cot 3, where (8 is the angle between the
meridional direction (the direction lying in an axial
and radial plane) and the relative velocity vector,
and ¢ alone determines the form of the velocity
diagram. But the meaning of the flow coefficient is
not limited to this particular simple case. The

’rDirection of
peripheral
W1 | velocity

U1

B‘j

\ Vm,l
{Meridional direction

(direction of through
flow)

Figure 1-3.—Velocity diagrams of axial-flow pump
rotor blade.



equation ¢ = V,, /U is a dimensionless expression of
the depth of any velocity vector diagram in the
meridional direction.

From the interpretations given previously,
V=constant xQ/D? and U=constant x nD, the
kinematic condition of similarity may be written in
the form

Q 1 Q

E E = D_3n =constant (1-3)
which applies throughout the machines being
compared. Accordingly the aforementioned
limitation to similarly located points becomes
unnecessary as long as D has the same meaning for
all machines being compared.

The next step consists of applying the fact that
force action between the machine and the fluid and
a corresponding exchange of work between the
rotor and the fluid are dominated by inertial forces.
(This assumption is valid if forces such as viscous or
gravitational forces are kept either negligible or
proportional to inertial forces by keeping the
Reynolds number and the Froude number
constant.) With this assumption, all fluid pressure
differences Ap in the machine are given, under
similar flow conditions and for incompressible
fluids, by the relation

Ap =constant X ‘%2 (1-4)

where p is the mass per unit volume of the fluid and
V is any well defined fluid velocity. This relation
follows immediately from the well-known Bernoulli
equation, which also explains the factor 1/2. The
right side of equation (1-4) can also be interpreted
as the mass flow per unit area pV times any change
in velocity (which under similar flow conditions is
proportional to V), so that this side of the equation
is proportional to a change in momentum of the
flow per unit area.

The pressure difference Ap may also be
interpreted as work or energy per unit volume (ft-
Ib/ft3 or 1b/ft2) if the unit of volume is displaced

under the pressure difference Ap. By dividing by the
weight per unit volume g,p, where g, =32.2 feet
per second squared, one obtains the work or energy
per unit weight, called a difference in head:

§1.1.2

Ah= ﬂ = constant X ﬁ (1-5)
Pgo 2'go

For gases, Ak (without its relation to Ap) is a
difference in enthalpy measured in mechanical units
(ft-Ib/1b) instead of thermal units (Btu/Ib). The
total exchange of mechanical energy between a
turbomachine and each unit of fluid weight passing
through the machine is called the head of the
machine. It obeys the same similarity relation as
any Ah:

12
H=constant X —
2g,

or (1-6)

28 H
V2

=constant

Thus this ratio has the same value at similarly
located points in similar machines with similar flow
conditions.

In terms of the rate of volume flow Q (with V
= Q/D?), equation (1-6) can be written in the form

g, HD*
QZ
This expression also has the same value for all
similar machines with similar flows. The one-

quarter power of this expression is sometimes called
the specific diameter:

= constant (1-7)

D= o (1-8)

Considering the condition of kinematic similarity
(eq. (1-2)), one can replace the representative fluid
velocity V' by a representative peripheral velocity of
the rotor U and thus obtain a new expression in
place of equation (1-6):

H =constant X —

28,
or (1-9)
28,H
—— =y =constant
o =y

where the constant of proportionality y is called the
head coefficient and may be considered as a
dimensionless expression of the head of the
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machine or of the corresponding change in
enthalpy. It always has the same value for similar
flow conditions in similar machines provided that U
is defined in the same manner in the machines
compared. Both U and y are referred to some
diameter of the machine, for example, the outside
diameter of its rotor, so that one can write
Vo =2g,H/U2.

If the same relation is desired in terms of the
linear dimension D and the speed of rotation n of
the machine, with U= constant X Dn, an equivalent
dimensionless expression of the head can be
written:

go.H
D2n2

=constant (1-10)

The energy exchange between the rotor and the
fluid, expressed in dimensionless form by the head
coefficient ¢ or by g,H/D?n?, can also be
described by Euler’s equation of the exchange of
angular momentum between the rotor and the fluid.
This equation is derived in detail in chapter 2. For
axial-flow machines, this equation leads to the
relation

I‘I=1);,AVUE (1-10a)
&o

where AV is the change in the peripheral velocity
component of the flow passing through the rotor
(change in peripheral momentum), and 7, is the
hydraulic efficiency, which expresses only head
losses and not losses due to leakage and drag (which
only increase the torque). The hydraulic efficiency
is, therefore, somewhat higher than the overall
efficiency.

Substituting equation (1-10a) into equation (1-9)
results in an expression for axial-flow machines:

AV,
¢=2ﬂhTU 1-11)

(For axial-flow turbines, one simply replaces n; by
1/n4.) Equation (1-11) shows that ¢ describes not
only the energy exchange but also the
circumferential deflection of the flow by the rotors
in dimensionless form. The greater y, the greater
the deflection AVy. For example, y =1 describes
approximately the maximum conventional
deflection of the flow in axial-flow pump or
compressor rotors. A relation similar to equation
(1-11) can also be written for radial-flow rotors.

Figure 1-4 shows the so-called characteristic
curves of a centrifugal (or axial-flow) pump at two
speeds of rotation, and figure 1-5 the same curves
for two geometrically similar pumps of different
sizes at the same speed of rotation n. Included are
curves of power consumption, which are obviously
proportional to oQg,H/n, where n denotes the
overall efficiency.

The coordinates of the curves of head as a
function of flow may be expressed in the
dimensionless forms Q/D3n and g,H/D%n2,
according to equations (1-3) and (1-10). If Q/D3n

Efficiency at r 1
\ /
\

- |

Efficiency at ny=< Head at n9
|
E? Head at n |
§ V\ L | |Power at Ny I
i <7 1/
: o l
‘ |
‘I§ Power at n17} [
|
|

P [ =i Parabolas connecting
points of similar flow
| | | 1 |
Rate of volume flow

Figure 1-4.—Characteristic curves of centrifugal pump at
two speeds of rotation n; and n;.
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Figure 1-5.—Characteristic curves of two similar cen-
trifugal pumps with linear dimensions D; and D, oper-
ating at same speed n.



has the same value for similar machines, then
80H/D?n? also has one and the same value,
provided that the effects of viscosity, compress-
ibility, cavitation, and gravity are either negligible
or kept proportional to the head H by using
constant values of their respective dimensionless

expressions (Reynolds number, Mach number, etc.).

For the similar flow conditions described by

\
—=_ =constant
D3n
and % (1-12)
8of _ constant
D2 n2 J

Q changes linearly, and H changes with the square
of the speed of rotation. However, at a constant
speed of rotation n, Q changes with the cube and H
with the square of the linear dimension D of the
machine. The corresponding square parabola
connecting points of similar flow conditions of the
head-capacity curves for different speeds is shown
in figure 1-4, and the corresponding 2/3-power
curve for different dimensions of the machines is
shown in figure 1-5.

It should be evident that the characteristic curves
(e.g., the head-capacity curves) do not connect
points of similar flow conditions and, therefore,
cannot be derived by similarity considerations.
Generally the characteristic curves must be
determined by tests. Only their slopes at the points
of best efficiency can be approximated by
theoretical means.

The head-capacity (and other characteristic)
curves shown in figures 1-4 and 1-5 can be reduced
to one curve by using the dimensionless coordinates
Q/D3n and g,H/D2n? or equivalent expressions
such as ¢ = V/U and ¢ =2g,H/U?. This was done
to obtain the curve shown in figure 1-6 for an axial-
flow pump. Different data point symbols refer to
different speeds of the same pump. The scatter of
these points is practically within the test accuracy,
which indicates that for a pump of this size
(impeller diameter, 15 in.) and the speeds listed, the
test fluid (water) did not show any effects of
viscosity (Reynolds number) or compressibility.
The test was conducted at a sufficiently high
absolute pressure to practically eliminate cav-
itation.

The type of curve shown in figure 1-6 is,
therefore, a valid dimensionless expression of the
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head-capacity curves of all geometrically similar
pumps of this design form, irrespective of speed
and size, provided that, for example, the Reynolds
number remains above certain lower limits.

As mentioned previously, the similarity relations
discussed in this chapter are valid if either of two
conditions is satisfied: if inertial forces are
dominating to the extent that all other forces, such
as viscous and gravitational forces, are negligible or
if these other forces have a constant ratio to inertial
forces and thus satisfy the Reynolds law of
similarity and the Froude law of similarity, respec-
tively. An analagous statement can be made relative
to cavitation, that is, that similarity can be
maintained if the absolute pressure is adjusted so
that the difference between all local pressures and
the vapor pressure of the liquid is proportional to
all other pressure differences in the machine caused
by inertial forces.

Although the effects of compressibility can also
be described by force actions, these effects are more
directly characterized by the changes in the volume
of the fluid handled in the machine. This means
that the volume flow Q at similarly located flow
cross sections in the machines being compared must
have the same ratio to the volume flow at some
standard place (e.g., the inlet to the machines). It
turns out that this similarity of volume flow is very
closely satisfied if the local Mach number is the
same at similarly located points in the machines
being compared.

A distinction is made previously between

5y
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Figure 1-6.—Dimensionless head-capacity curve of
axial-flow pump.
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similarity relations using local velocities such as
¢=V/U=constant and those using overall
operating characteristics such as Q/D3n=constant.
The relation V/U=constant means that ¥/U has
the same value only at similarly located points in the
machines compared, and the relation Q/D3n
= constant means that this ratio has the same value
throughout the machines compared. For
compressible fluids, however, the relation
Q/D3n = constant also has a definite meaning if it is
applied only to similarly located regions in the
machines compared. A region is defined as that
portion of the flow passages within a machine
through which the volume flow Q is essentially
constant.

1.1.3 Review

A design form comprises all geometrically similar
designs regardless of absolute size. Thus design
forms are dimensionless.

Geometrically similar machines have something
in common, but their performance or operating
characteristics may obviously be different because
of differences in absolute size, velocities, forces,
etc. However, size, velocity, and force can be
combined into a dimensionless performance
characteristic, for example, the lift coefficient of an
airfoil:

oL _

(0V2/2)A
Geometrically similar airfoils have the same lift
coefficient only if the flow over the airfoil is
similar. Similarity of flow requires not only
geometrically similar flow boundaries but also a
kinematic flow criterion of similarity, in this case,
the angle of attack between the flow and the airfoil.
Similarity considerations may be extended to apply
to mechanical characteristics such as stresses or
elastic deformations.

Similarity of flow, particularly in turbo-
machinery, may be defined by the similarity of
velocity vector diagrams at all geometrically
similarly located points in the two or more
geometrically similar machines or flow structures
being compared. Similarity of flow requires that all
forces within the flow change proportionally to
each other. If inertial forces dominate, as is the case
in turbomachinery and flow over an airplane wing,
other forces such as viscous and gravitational forces

must change proportionally to the inertial forces;
this leads to the requirement of constant Reynolds
number, constant Froude number, etc., unless
viscous and gravitational forces are negligible.
Furthermore changes in the volume of a gas must
have the same ratio between pairs of similarly
located points in the machines compared, so that
the Mach number must be the same at similarly
located points. Finally, the pressure at similarly
located points in liquids must have the same
dimensionless relation to the vapor pressure; that is,
it must have the same cavitation number.

The velocity vector diagrams in turbomachines
generally contain fluid velocities V'=constant
x Q/D? and peripheral velocities of the solid parts
U=constant x nD. To maintain similarity of the
velocity vector diagrams, the flow coefficient ¢ =
V77U must have the same value at similarly located
points; therefore (Q/D?)/nD=Q/D3n must have
the same value to obtain similar flow in
geometrically similar machines.

If Q/D3n has the same value for geometrically
similar machines (if the flow in such machines is
similar), the head H (energy exchange per unit
weight of fluid), or the change in enthalpy, is
proportional to the square of the velocities of the
rotating parts U and of the fluid V in the machine.
Thus, for similar flow, the head coefficient
¥ =2g,H/U? and the equivalent ratio 2g,H/V?
have the same value at similarly located points in
similar machines, and g,H/n?D? as well as
g,HD*/Q? have the same values for similar
machines operating with the same value of Q/D3n.
The ratios Q/D3n and g,H/n2D? or g,HD*/Q?
may be considered as dimensionless, fluid-dynamic
operating or performance characteristics of
turbomachines. Other dimensionless fluid-dynamic
and mechanical characteristics are introduced in
section 1.2.

1.2 Relations Between Operating
Characteristics and Design
Characteristics

1.2.1 Basic Specific Speed

In section 1.1, the performance or operating
characteristics of turbomachines are expressed in
the following dimensionless forms:

Flow coefficient in the form



V,
p=—

U

or as the ratio (1-13)

Q

nD3

Head coefficient referred to peripheral velocity in
the form
y= 28oH
U2
or as the equivalent ratio (1-14)

8oH
n2p2

Head coefficient referred to fluid velocity as the
ratio

28, H

2
or (1-15)
8oHD*

(22

Head coefficient in the form of the so-called
specific diameter

D - D(goH)l/4

o172 (1-16)

Similarity of flow in geometrically similar
turbomachines depends primarily on the kinematic
condition of similarity:

v onstant

- =

U

which has the same value at similarly located points
in similar machines, or

=constant (1-17)

D3n
which has the same value throughout similar
machines.

If this condition for similar flow is satisfied
(along with some additional conditions given in sec.
1.1),

§1.2.1

=constant

or (1-18)

8ot
n2p?2

=constant

and

2g,H
12

or (1-18a)

=constant

1/4
D, = @o) "*
0172

=constant

The dimensionless operating or performance
characteristics Q/D3n, 8oH/n2D2?, etc. can be
calculated only if the size of the machine D is
known, which means at least one of the machines to
be compared must have a known design form and
known dimensions.

It is evident from equations (1-17) and (1-18)
that, when the speed n of a machine with fixed form
and size is changed while similarity of flow is
maintained, the rate of flow Q changes with the
first power of the speed of rotation » and the head
H changes with the second power of the speed of
rotation n2 and of the rate of flow Q2. The
resulting parabolic relation between H and Q is
shown in figure 1-4. The same equations show that,
when the size D of a machine is changed while its
speed, similarity of geometric form, and similarity
of flow are maintained, the rate of flow Q changes
with the third power of the linear dimension D3 and
the head H changes with the second power of the
linear dimension D2. The resulting 2/3-power
relation between A and Q is shown in figure 1-5.
Consequently, any values of H and Q can be
obtained without changing the form of the machine
or of the flow by merely changing the size D and the
speed n of the machine. For example, in a diagram
of H as a function of @, similar flow can be
maintained by following successively along a
parabola H =constant X 0? while holding the
diameter constant and along a curve of
H =constant x Q23 whjle holding speed constant
(figs. 1-4 and 1-5).
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If Q, H, and n are considered as the given
operating conditions of the machine, not every pair
of values of Q and H can be reached with a given
speed n, as one can follow without restriction only a
curve H =constant x 02/3 (fig. 1-5) and can change
only the size D at will.

It is then natural to ask the following question:
What field of operating conditions of n, Q, and H
can be covered by turbomachines of the same
geometric design form operating under similar flow
conditions? This question can be answered by
eliminating from equations (1-17) and (1-18) the
linear dimension D. It is customary to accomplish
this by dividing (Q/D3n)!/2 by (g,H/ntD?)3/4:

Q1/2 n3/2p3in2
D3/2n1/2 (goH)3/4

172
n
= Q = constant

o)

which satisfies, of course, the condition
H =constant Xx 0?3 at n=constant. The resulting
expression for the basic specific speed, or more
concisely, the specific speed ng, is

nQ\?2
" @t

which is defined by the following statement: Any
fixed value of the basic specific speed describes all
operating conditions (n, Q, and H) that can be
satisfied by similar flow conditions in geometrically
similar turbomachines.

This definition is, of course, valid only if inertial
forces dominate the flow and if the flow is kept
similar also with respect to the effects of viscosity,
compressibility, cavitation, and gravity or if these
effects are negligible.

The particular form of the specific speed given by
equation (1-19) has primarily a historic rationale,
although it differs from the conventional forms by
the fact that it is dimensionless if consistent units
are used for n, Q, H, and g,. The concept of the
specific speed was first introduced by Camerer in
the second decade of this century in the form of the
turbine specific speed:

ng (1-19)

np1/2
sP= ps7a (1-20)
where the power P is given as

_ n0goQH
p= 550

=constant X QH
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The early definition of this concept was that N pis
the speed of rotation of a geometrically similar
turbine delivering 1 horsepower under a head of 1
meter. The equivalence of expressions (1-19) and
(1-20) is demonstrated by multiplying the top and
bottom expression (1-19) by H1/2.

It should be evident from the derivation and
definition of ng that any power of expression (1-19)
would correspond to the same definition and would
have the same practical meaning. For example, the
2/3 power of ng would be the ratio of a
kinematically determined (fictitious) velocity
(nQ172)2/3 to a dynamically determined velocity
(g,H)!/? and might thus have a clearer physical
significance than the form (1-19). On the other
hand, the specific speed may also be written as a
ratio of two linear dimensions |Q/(g,H)!/2|!/2 and
n/(g,H)1’2. The first one is given by the rate of
flow and the second by the speed of rotation, both
in relation to the dynamic velocity (g,H)1/%.
Evidently there is more than one physical
interpretation of the specific speed, and thus there
is no good reason for departing from the
conventional form of the specific speed except for
making it dimensionless as is done in equation
(1-19).

There are various dimensional specific speeds in
use. All of them eliminate the standard
gravitational acceleration g,, because it is constant,
and measure n in rpm. The conventional pump
specific speed in the United States, with Qin gallons
per minute, is

n(rpm)|Q(gal/min)] /2 <g ft )3/4

[H(ft)}3/4 sec?
sec \3/2 gal\ 172
(o025 )2 (ram ) s,
= 17 200 ng (1-21)

Another form is

n(rpm)|Q(ft3/sec)] /2

(H(f)]34
_ ft \3/4 sec
B <g0 sec? > (60 min )ns

=812 ng

(1-22)



The turbine specific speed used in the United States
is

n(rpm)|P(hp)|!/2 =g3/4<60 g) gopn>1/2
[H(ft))3/4 ° min /\ 550 ns

=259 n, (1-23)

where the efficiency % is equal to 0.9.

There are, of course, still other specific speeds
used in countries having the metric system, which
gives ample reason for using a dimensionless
expression for this inherently dimensionless
number. '

It should be evident that the specific speed of any
given machine and of geometrically similar
machines can be varied over a wide range by
operating with dissimilar flow conditions, that is, at
different values of the dimensionless rate of flow
Q/D3n. However, this is generally not advisable
because the efficiency and other operating
characteristics are favorable only over a limited
range of Q/D3n.

It has become customary to associate a
turbomachine or a class of geometrically similar
turbomachines with its basic specific speed at the
Q/D3n value of best efficiency. In this restricted
sense the basic specific speed becomes a
dimensionless operating characteristic of any class
of geometrically similar turbomachines.
Turbomachines having the same specific speed at
the best efficiency do not have to be geometrically
similar (since the same operating condition can be
satisfied by different design forms). But
turbomachines of different specific speeds at the
best efficiency cannot be geometrically similar
(except in the rare case when the efficiency curve
plotted against Q/D3n has a completely flat top).
Thus the basic specific speed at the best efficiency is
regularly used as an index of turbomachinery design
despite the fact that in its original form the specific
speed contains only operating characteristics, not
design characteristics.

The specific speed at best efficiency does not
determine the design of a turbomachine uniquely.
Nevertheless, there is a relation between the design
form and the specific speed so defined, particularly
after certain design choices have been made such as
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radial or axial flow, inward or outward fldw, and
the number of stages to be used. Before relations
between the basic specific speed and the design
form are derived, it is well to consider a much
simpler use of the concept of the specific speed.

Evidently the specific speed can be calculated as
soon as the operating characteristics n,Q, and H of
a new machine are known, before any decisions
regarding the design of the machine are made. One
may then search the records of existing machines
for a machine having the desired specific speed near
its point of best efficiency and having charac-
teristics which are acceptable for the machine to be
designed (number of stages, axial or radial flow,
etc.). If such a machine is found, the problem
reduces to simply scaling the known machine up or
down in size D and speed n according to equations
(1-17) and (1-18) until the desired performance is
obtained. This performance may, of course, depend
on variables not contained in the specific speed,
which may very well determine the choices between
radial and axial flow, single-stage and multistage
machines, and so on. Sections 1.2.2 and 1.2.3
elaborate further on this aspect.

The next step is obviously to establish a relation
between the basic specific speed at the best
efficiency and the design form. The desired relation
is first derived for radial- or mixed-flow centrifugal
pumps (or compressors), with particular reference
to the rotor or impeller design. These consid-
erations are limited to single-stage machines. In
other words, the head H is the head of the
particular single stage considered. The specific
speed is, therefore, the specific speed of that
particular stage.

Evidently
D*x  Dix D*r D%
0- Vm,i(—g———g—)=vm,i+< o
and
LUl
"D

in the notation given in figure 1-7. Hence

11
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s (goH)3/4 D 4
172
2
D; (o FD4
and
U2 %

1 3/4
s = 21/4,1/2( ) (
3/2
x( > 1

This equation may be evaluated according to
figure 1-7 with respect to D=Dg ma and
U=Ugmax» D=Do,min and U =Up,min» OF any
other associated D and U values. The most critical
value of ¥ =2g,H/U? is its maximum value at
D=D, min and U=U, min because the Euler
turbomachinery momentum equation derived in
chapter 2, section 2.3, states that the change in the
product of the peripheral flow velocity component
Vy and the peripheral rotor velocity U is

28, H

D

D (1-24)

proportional to the head. Thus, the lower U, the
greater the change in V' (the greater the deflection
of the flow in the peripheral direction).

Figure 1-8 shows the evaluation of equation
(1-24) with D=D,, 1;, and U=U, p;, under the
empirical assumptions that V,, ;/U;=0.36
=constant and U?,_,,,,-,, /2g,H=1=constant. These
assumptions are reasonable for centrifugal pump
impellers with backward-bent vanes.

Equation (1-24) appears in a simplified form if
one selects D =D; and U= U; (see fig. 1-7), so that

3/4
T @ HYA 2142 ( >

><< >1/2<1_%>1/2

This form of equation (1-24) is particularly useful
for axial-flow rotors where D; and U; apply to both
the high-pressure and the low-pressure sides of the
rotor (see fig. 1-20). In this case, Dy =Dy ;.

As mentioned previously, the minimum diameter
on the high-pressure side of the rotor is critical with
respect to the value of y =2g,H/ U2. For axial-flow
rotors, the hub diameter Dy, 5 on the high-pressure

Ui
28, H

3 an/2 1

X

Vm,i

U, (1-25)
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Figure 1-7.—Mixed-flow rotor profile defining notation.
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Figure 1-8.—Pump impeller profiles as function of basic
specific speed. (Values in parentheses are dimensional spe-
cific speeds with flow rate in gal/min.)

side is the minimum diameter on that side. Using
the notation in figure 1-20, one may write
equations (1-24) and (1-25) in the form

3/4 372
. Uz, D;
S oal/ag12\ 2g H Dy,

172 P 1/2
Vim,1 > Djy >
X — R (1-26)
( Ui ( D?

This equation was evaluated for 2g,H/ Uf,’z
=constant =1 and 4 and for V,, ,/U;=0.36. The
results are shown in figure 1-9. The first value ng )
is derived from 2g,H/ Uf,,z =1 and applies
approximately to pump and compressor rotors of
conventional design. The second value ng4 is
derived from 2g,H/ Uf,,z =4 and applies primarily
to impulse type turbine rotors. It is possible that

much larger values than y , =1 may also apply to
pump and compressor rotors (see sec. 1.3.2.1).

Equation (1-25), which applies primarily to axial-
flow machines, was evaluated in general form, and
the results are presented in figure 1-10. Included in
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this diagram are lines for 2g,H/ an,l = constant,
where the meridional velocity component V,, | is
obviously the axial velocity component at the low-
pressure side of the rotor (see fig. 1-20). With these
lines figure 1-10 represents also an evaluation of the
equation

nQ\2 1 V2 374
(g, H)¥4 24712

5 1/2
x Ui (1-DPht
Vit Di2
where V,, | = V,,,,;. Equation (1-27) is equivalent to

equation (1-25) and is useful with respect to
cavitation considerations (see sec. 1.2.2).

§s=

(1-27)

Equation (1-24), with its modifications for axial-
flow rotors, is by no means the only relation
between the basic specific speed and the design
characteristics of the machine. Equation (1-24)
refers particularly to the inlet conditions of a pump
or compressor impeller (discharge conditions of a
turbine rotor) and uses the pump inlet flow
coefficient V, ;/U;. Only the head coefficient
28, H/ Ug refers to the outside (high-pressure side)
of the rotor.

Referring instead primarily to the outside (high-
pressure) cross section of the rotor, one may write
the rate of flow in the form Q=V,, ,D,7b,, where
b, is the rotor width at the outside diameter D,
measured normal to the outside meridional velocity

A
.1
Ns | 1.0 .55
ngq 0.35 2

=
U

i

Figure 1-9.—Axial-flow rotor profiles as function of basic
specific speed ng Sn,_ ; for head coefficient 2, H/ U, = 1;
ng 4 for 28, H/ U, =4).
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Figure 1-10.—Characteristic diagram for axial-flow turbomachinery. (See fig. 1-20 for notation.)

Vm,o (see fig. 1-7). With this expression of @, the
basic specific speed assumes the form

an/Z _ Uo (Vm,oDoWbo)l/z
(goH)3/4 D07r (goH)3/4

2
_ 234 1 UE 34
72\ 28, H

s=

(1-28)
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Instead of limiting this relation to impeller
characteristics, one can examine the flow conditions
in the stationary passages surrounding the outside
diameter of the rotor (see fig. 1-11). Here
Q=Vpy Ay, where Ay, is the total area (so-called
throat area) of the stationary passages, that is, the
total stationary vane passage area closest to the
rotor. If the radial dimension of this passage is d;,
and its average width normal to the meridional
velocity is by, then A,, =N d; by, where N is the
number of stationary passages for one stage. Thus
N=1 for a single volute, N=2 for a twin volute,
and N=10 for 10 guide vanes.

Furthermore, from the law of constant angular



momentum,

D
Vin= VU,o D_;,

where Dy, is the diameter corresponding to the
distance of the centroid of the throat cross section
from the axis of rotation (see fig. 1-11) and Vy, is
the peripheral fluid velocity at the outside diameter
D, of the rotor (see fig. 1-7). With

D
Q= VinAm = VU,o EiAth
th

and
_ U
"= nD,
one finds
172
nS= nQ = Uo
(gom3/4 TrDO

1/2
D, 1
><(VU,o D_,,,A’h> 7(&)”)3/4

2 3/4
_ 23/4 Uo
T \28,H

172

% ( VU,O DO Afh ) (1_29)

Uy Dy D(z)

Assuming zero absolute rotation of the fluid at the
low-pressure side of the rotor (i.e., ¥V ; =0), one
can derive from Euler’s turbomachinery equation
(e.g. 2-18)) an equation for radial-flow pumps
which is analogous to equation (1-11):

_28,H _ Vu,e

(1-30)

Substituting this into equation (1-29) leads, for
Vi =0, to the relation
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Figure 1-11.—Radial casing section defining notation. Throat
area A, =dy Xbyy.

n 2_2”“< Y ><L9_A_>
ST m \2g,H "h D D2

(For turbines 1/, is replaced by 74.)

1/2

(1-31)

It is thus apparent that the basic specific speed,
which is the dimensionless expression of the
operating conditions n, 0, and H, can be translated
into dimensionless design parameters in many ways,
partly by changing the peripheral velocity of the
rotor to which it refers and partly by changing the
way in which the rate of volume flow Q is expressed
in terms of the dimensions of and the velocities in
the machine.

It should be obvious that the relations between
equation (1-24) and the subsequent equations
(1-28) and (1-29) are based on the condition of
continuity of an incompressible fluid with the
volume rate of flow Q@ considered constant
throughout the machine.

Other generalizations are possible regarding, for
example, the diameters D or peripheral velocities U
of the solid rotating parts. The relation between

15
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equations (1-25) and (1-26) is an example. This
second type of generalization applies in principle to
compressible as well as incompressible fluids. There
is no reason to believe that the types of
generalization mentioned here exhaust the
possibilities for such relations between the basic
specific speed (the operating conditions », Q, and
H) and the corresponding design parameters
(2g,H/U?, V/U, and several ratios of linear
dimensions).

Figure 1-8 shows examples of impeller profiles
determined from equation (1-24) for the same head
and capacity. It should be noted that the size of the
rotor decreases rapidly with increasing basic
specific speed. In the absence of other restrictions,
one should thus select the maximum basic specific
speed in order to minimize the size and,
presumably, the cost of the machine for a given
volume flow rate Q and head H.

In the commercial pump field, the most obvious
upper limit in the speed of rotation stems from the
restriction of standard electric motor speeds to 3600
rpm for 60 hertz, which frequently leads to very low
basic specific speeds for pumps with low flow rates
and fairly high head values. This restriction does
not apply to steam or gas turbine drive or to geared
drive. However, the most fundamental restrictions
in the speed of rotation result from cavitation,
compressibility effects, and centrifugal stresses in
solid rotating parts. These restrictions are discussed
in sections 1.2.2, 1.2.3, 1.3.2.1, 1.3.2.2., and
1.3.3.1.

There exist also practical lower limits for the
specific speed per stage of a turbomachine, which
result from excessive skin-friction and leakage
losses. Figure 1-12 shows optimum values of the
efficiencies of single-stage turbomachines (par-
ticularly pumps) as a function of the single-stage
basic specific speed. These values represent so-
called stage efficiencies (sometimes called bowl
efficiencies), that is, they do not include losses due
to ducting the flow to and from the active vane
systems of the machine, which are of particular
importance for single-stage machines with high
specific speeds.

The efficiencies shown in figure 1-12, which gives
specific speeds per stage, fall off significantly at the
low end of the specific speed scale. Thus this drop
in efficiency determines the specific speed of the
entire unit where a change from a single-stage to a
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Figure 1-12.—Estimated optimum pump stage efficiencies.

multistage pump may be appropriate. If this lower
limit of specific speed per stage is applied to
multistage units, it may also set, with a practical
upper limit on the number of stages, a limit where
transition from hydrodynamic machines to
hydrostatic machines (positive-displacement
machines) is appropriate.

In review, then, the relation of the fluid velocities
V to the peripheral velocities U of the rotating
parts, called the flow coefficient

V .
—L — constant X %

i D°n

and the corresponding relation of velocities to the
head of the machine

g8oH
D2p2

26 H
V= Eol? _ onstant x

are related to the operating conditions n, Q, and H
by eliminating the linear dimension, or diameter, D
from Q/D3n =constant and g, H/D?n? = constant.
The resulting dimensionless combination of
operating conditions n, Q, and H is called the basic
specific speed:

172
ns:L (1-19)

(&>

The resulting similarity relation ng=constant
supplements the relations Q/D3n=constant and
go,H/D?n? = constant (derived in the preceding sec.
1.1). The new relation defines the requirement of



similarity of flow in similar machines with respect
to the operating conditions n, Q, and H only.

The three relations Q/D3n=constant,
goH/D?n? =constant, and ng=nQ12/(g,H)3/4
=constant, which result from similar flow in
similar machines, are, of course, interdependent.
Any two of these relations are sufficient to
determine the third.

The application of the basic specific speed is
usually limited to the values of n, Q, and H at which
a particular machine has its best efficiency (see fig.
1-4). It is expected that this condition exists always
under similar flow conditions, that is, at only one
value of Q/D3n (with effects of viscosity and
compressibility disregarded). Thus there is only one
basic specific speed at the best efficiency point
associated with one class of geometrically similar
machines, and it is called the specific speed of that
form of machine.

The same basic specific speed at the best
efficiency point can be achieved with machines of
different geometric forms, but different basic
specific speeds at the best efficiency point require
corresponding differences in the geometric design
form of the machines compared. Thus the basic
specific speed at the best efficiency point, itself
depending on operating conditions only, becomes
an index of the design forms of turbomachines.
Figures 1-8 and 1-9 show such relations. They are
achieved analytically by substituting

Uo

n=
©D,

and

Q= ( V——-—'"';D"z”><1 - D—E>
D;

into the specific speed equation (eq. (1-19)). The
resulting equations (egs. (1-24) to (1-31)) establish
relations between the dimensionless expression of
the operating conditions n, Q, and H and design
parameters such as diameter ratios like D,/D;,
head coefficients of the general form 2g,H/U?,
and flow coefficients of the form V,,/U.

The head coefficients and flow coefficients
together determine, under certain assumptions, the
velocity vector diagrams that form the bases for the
vane shapes of turbomachines.

The basic specific speed has a dramatic effect on
the size of the impeller, as shown by the pump
impeller profiles in figure 1-8. An increase in basic
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specific speed is, therefore, usually desirable. Such
increases are necessarily connected with cor-
responding increases in the fluid velocities and in
the peripheral velocities of the rotating parts. The
limitations of the increases in velocities due to
cavitation, compressibility of the fluid, and stresses
in the solid parts of the machine are discussed in the
following sections.

1.2.2 Cavitation Characteristics Described by
Similarity Considerations

The first generalization of similarity con-
siderations of turbomachinery going beyond the
flow considerations outlined in sections 1.1 and
1.2.1 involves cavitation in turbomachinery
handling liquids.

Cavitation is the local vaporization of a flowing
liquid caused by local pressure reductions due to the
dynamic action of the flowing liquid. The term
cavitation usually also includes the subsequent
condensation when the liquid moves from the low-
pressure zone into a zone of higher pressure.
However, the eroding effects (on the solid
boundaries) of this condensation of vapor in a rapid
stream of liquid should not be called cavitation but
rather cavitation damage.

The formation and existence of cavitation voids
(vapor- and gas-filled regions) can be related to the
vapor pressure and the pressures in the flowing
liquid in a reasonably straightforward fashion. This
section does so on the basis of simple similarity
considerations. The rate of cavitation damage is
probably determined by the forces connected with
the collapse of cavitation voids, rather than by the
overall hydrodynamic behavior and design of the
machine. Since only the latter are the principal
subjects of this compendium, the complex problem
of the forces connected with condensation in a
rapidly moving stream of liquid is not considered.
Also, these forces have not yet been described by
simple similarity considerations.

The usual so-called classical assumption on the
occurrence of cavitation states that cavitation takes
place instantaneously whenever and wherever the
local static pressure in the liquid drops to the vapor
pressure of the liquid as given in its vapor tables
(e.g., the familiar steam tables for water).
Departures from this classical behavior are
discussed in chapter 2, section 2.8. Although there
are good reasons for such departures, it is
nevertheless true that most liquids satisfy the
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classical assumption very closely under most
conditions existing in turbomachinery. The present
analysis, using similarity considerations to describe
cavitation, is carried out under the classical
assumption, along with the assumption that the
local temperature and vapor pressure of the liquid
at the point of cavitation are known.

The occurrence of cavitation in turbomachines is
usually described by means of a so-called net
positive suction head NPSH, which is the total head
above the vapor pressure at the low-pressure side of
the machine outside the rotor. In this compendium,
the NPSH is designated by H,,, where H denotes
total head (including the velocity head) and the
subscript sv refers to suction and vapor pressure.
Thus

y2 r
H,=h+ % — 2% 1-32
sv § 22, 8op ¢ )

where hg is the static head equal to the static
pressure divided by the weight per unit volume of
the fluid g,p, V; is the fluid velocity at the place
where A, is measured, p, is the vapor pressure
(usually at the bulk temperature of the liquid), and
Az is the difference in elevation between the point
where h; and V are measured and the point of
cavitation.

Whenever cavitation occurs somewhere in the
machine, vapor pressure exists at that point in the
machine. Thus H, is the difference in head
between the point of cavitation and a convenient
place on the suction side of the machine where the
head A; and the velocity V; are measured. The
difference in elevation Az can be eliminated by
converting hg and thereby Hj, to the elevation of
the point of cavitation (which may have to be
estimated). If this is done, the head difference Hy,
is controlled by inertial forces in the same sense as
H and therefore, obeys the same laws of similarity
as H or any other dynamic head difference in the
machine. One may write for Hj,, then, the same
similarity relations and dimensionless expressions
as derived in sections 1.1 and 1.2.1 with respect to
H and apply them to any other dynamic head or
pressure difference in turbomachinery.

It is stated previously that H,, is a head
difference in the machine only if vapor pressure and
thus cavitation exist somewhere in the machine.
Therefore, Hy, is useful only in connection with
cavitation and the observation of certain effects of
cavitation.

The best method of observing cavitation is the
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optical method because, with experienced
observers, it is the most sensitive method and
because it discloses the location and form of the
cavitation voids. The value of Hg, can be recorded
in relation to the size, location, and form of the
cavitation voids observed and thus assumes a
definite meaning.

Obviously optical observation is possible only
with specially equipped machines. As such
machines are rarely available, it is customary to
observe cavitation in turbomachines indirectly by
its effect on the performance of the machine. Figure
1-13 shows the effect of cavitation on the head-
capacity curve. In this figure, H,, can be correlated
definitely only with the maximum capacity
achievable with a given (reduced) value of Hg,. The
slight drop in performance that usually exists over
the entire capacity range is difficult to measure by
this method. For this reason, it is customary to test
a machine at constant capacity Q and speed n and
to observe other performance variables such as
head, power, or efficiency as a function of Hg,. The
value of Hg, is reduced in small steps from high
values, where (because of the absence of cavitation)
no effects are expected, to low values, where the
performance deteriorates drastically. On a curve so
obtained (fig. 1-14), one may then mark the Hy,
value at which the first effects of cavitation are
observed, that is, the value at which the first clear
deviation from the horizontal (zero-effect) part of
the curve occurs (point A), and one may consider
this a safe lower limit of Hg, at the particular
capacity Q and speed n of the test. (The actual
safety of operation at this point is not assured, as

- Head-capacity curve at very high Hqy

Head-capiily
curve at reduced

Hoy “Hey 1

Head

Maximum safe capacity at H

{not well defined) .l

Ultimate capacity at Hgy, )
(well defined, but not usable)

Rate of flow {capacity)

Figure 1-13.—Pump head-capacity curve under influ-
ence of cavitation.
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~B (cavitation breakdown)
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B (cavitation A
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constant capacity Qp

Total inlet head, Hy

Figure 1-14.—Typical effects of cavitation on head of pump at two
constant capacities and one constant speed of rotation.

local cavitation can be observed optically or
acoustically well before cavitation has any effect on
the performance of the machine (see also ch. 2, sec.
2.8).

Furthermore one may mark a second value of
Hg, (point B) at which the performance begins to
deteriorate very rapidly (cavitation breakdown),
and one may consider this the ultimate lower limit
of H,. Figure 1-15 shows results of an actual
cavitation test of this type (performed by the
Worthington Pump and Machinery Corp.) on an
axial-flow pump which indicate that the initial
effect of cavitation may be an increase, instead of
the usual decrease, in head and power con-
sumption. This phenomenon is not yet fully
understood but is usually explained as being caused
by a local reduction in skin friction at the onset of
cavitation. An increase in head with the onset of
cavitation is most frequently observed at capacities
below that of the best efficiency point, where the
flow has some tendency toward instabilities
(separation, stall).

In figure 1-15, the total inlet head above the
vapor pressure Hg, is made dimensionless by
division by the total pump head H. This ratio,
called the Thoma cavitation parameter oy, is one
of the first methods of making H, dimensionless.
Because the resulting changes in head and power are
also plotted in dimensionless form, a set of
cavitation curves of this form should not change
with the speed of rotation or the absolute size of the
machine if tests are performed under similar flow
conditions (i.e., with geometrically similar
machines at the same value of Q/nD3 (see secs. 1.1

and 1.2.1)). If this type of dimensionless cavitation
curve changes under supposedly similar flow
conditions as a function of size or speed, one must
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Figure 1-15.—Cauvitation test points for axial-flow pump.
Specific speed, 0.755.
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conclude that the flow is not truly similar at the
same ogy. Such departures from similarity under
conditions where the flow should be similar under
the classical assumptions are called scale effects and
are further discussed in chapter 2, section 2.8.
Besides using the Thoma cavitation parameter

Hy,

one may introduce Hy, instead of H directly into
the similarity parameters presented in sections 1.1
and 1.2.1. This yields the following sets of ratios:

thl)jlz'lsu w

or ?

goHsy

n2D2 _J

(1-34)

and

28,H,

2
or (1-35)

goHsvD4
Q2

The flow coefficient, or dimensionless capacity,

_Vm A
=
or the ratio > (1-13)
o
nD3 J

is, of course, identical to that used previously. In
the very same manner as described in section 1.2.1,
the dimensionless capacity Q/D3n can be combined
with either expression (1-34) or (1-35) to eliminate
the linear dimension D and, thus, obtain the so-
called suction specific speed:

an/Z

"G HW e
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Any fixed value of the suction specific speed
(S=constant) describes all suction operating
conditions (n, Q, and Hjy,) that can be satisfied by
similar flow and cavitation conditions in
geometrically similar suction passages of
turbomachines. (Compare this definition with that
of the basic specific speed given with eq. (1-19).)

The dimensionless expressions (1-34) and (1-35)
of H, are found in the field of cavitation to be even
more important than the corresponding expressions
of the head of the machine H, which are discussed
in sections 1.1.2 and 1.2.1. With respect to cav-
itation, these expressions and the flow coefficient ¢
are usually used in connection with the velocities
V.n,i and U;, because these velocities exist on the
low-pressure side of the rotor, where cavitation is
expected to start.

Figures 1-16 and 1-17 show the inception value
(curve A) as well as the breakdown value (curve B)
of H,, in its two nondimensional forms
2gH,/ an, ;and 2gH g, / U,2 plotted against the flow
coefficient V,, ;/U;. Generally the minimum value
of 2gHg,/V; ; (i.e., the condition where the
disturbing effect of the rotating vanes is a
minimum) coincides with the flow coefficient of the
best efficiency point, although one can design for
departures from this rule if desired. Nevertheless
these plots, like plots of airfoil characteristics,
particularly pressure distributions, clearly show an
optimum in performance as a function of the
direction of the relative flow in relation to its design
direction.

O

zgoHsv/V2 N

Flow coefficient, v, ifU;

Figure 1-16.—Cavitation characteristics of centri-
fugal pump made dimensionless by means of

2
Vo and U,.
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Figure 1-17.—Cauvitation characteristics of centrifugal pump
made dimensionless by means of U, and U;.

It is desirable to investigate the behavior of
individual elements of turbomachines, particularly
their vanes, relative to the pressure distribution and
the resulting cavitation performance as a function
of the angle of attack. This was done in water
tunnels, and a remarkably good correlation
between the changes in theoretical pressure
distribution and corresponding changes in the
optically observed cavitation performance was
obtained, particularly regarding the onset of
cavitation.

During these investigations it was desirable to
define a cavitation number that is independent of
the particular conditions existing in turbomachines.
This number is

D—Py
On = (1-37)
p pV2/2

where p is the static pressure in the flow, measured
on a surface parallel to the flow away from the
influence of the tested body (vane or airfoil), p,, is
the vapor pressure in the flowing liquid, p is the
mass per unit volume of the liquid, and V is the
free-stream velocity relative to the tested body,
measured at the same place as p. Obviously o, is
included in the classical assumption of cavitation
and is equal to the minimum pressure coefficient of
the object tested, defined as

P —DPmin

I (1-38)
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In terms used in the turbomachinery field, this
cavitation coefficient assumes the form

hSU

g,= —2— (1-39)
P pw,-2/2

where hg, is the static head above the head
corresponding to the vapor pressure. Hence

V2

hSU=HSU_2?— (1-40)
o

where V is the local velocity of flow at the point
where hg, and Hg, are being measured or
evaluated. At the low-pressure side of the rotor

Vi, W
H,, 20 +ap 3%, (1-41)
(see fig. 1-7).

Since V; is a local fluid velocity, it cannot be
related directly to a rate of flow and a cross section
of the machine. To achieve this relation, one has to
use average velocities defined by some simple
relations, primarily the condition of continuity and
perhaps a conclusion from a prescribed angular
momentum. Defining V; by the equation
V2=Vv% .+ V2%, one can obtain the desired
relation by determining an average Vm,i from the
condition of continuity and Vy;; from the angular
momentum that the flow is intended to have at the
cross section considered.

However, V; so defined does not include flow
losses, in particular the existence of a boundary
layer on the walls of the space of revolution in
which V; is defined. To consider this, one
introduces a correction factor C; which takes into
account nonuniformities in the velocity distribution
in the low-pressure passage of the rotor as well as
pressure losses between this passage and the section
where hg, and Hg, are being measured. With this
correction factor, equation (1-41) appears in the
form

2 w2
HSU=CIE‘;+ap2gf’O (1-42)

The suction specific speed can be related to
certain design and flow parameters in the same
manner as the basic specific speed n; of the machine
(in sec. 1.2.1). The expression exactly corre-
sponding to equation (1-24) is
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(goHsv)3/4 2174172

172 3/2 2\ 172
x<—Vl1> <Iﬁ> <1—2'L (1-43)

With D=D, and U=U,, this relation is not as
useful as the corresponding relation for the basic
specific speed (eq. (1-24)), because Hy, is not as
directly related to U, as the total head H of the
machine (or stage). Rather, H,, may be related to
the peripheral rotor velocity in the low-pressure
passage (for pumps, the inlet), which is
U;=U(D;/D). Substituting this into equation
(1-43) leads to

i ﬂQl/z i i ( U,z >3/4
(8, Hyy )34 21747172\ 2g,Hy,

172 2\ 172
Vmi) < Dh>
x| == 1-—4 1-44
( U; D? (1-44

Further analysis of the cavitation behavior of
turbomachines shows that 2g0Hw/U,2, cor-
responding to the head coefficient y;, is not the
most useful suction head coefficient. Instead, the
head coefficient referred to the absolute inlet
velocity 2g,Hg,/ V,; (as used in sec. 1.2.1, eq.
(1-27)) is very significant. With this coefficient,
equation (1-44) assumes the form

_ an/Z ~ 1 ( V[2 >3/4
(goHsv)3/4 21742172 ZgoHsv

3/2 2 172
e i(l_ei) (1-45)
Vi Vin,i D,2

It is evident that this expression may also be
written in the form

2 3/4
S= 1 < Vm.i )
21742172 \ 28, Hy,

. 2 1/2
XAQ_&:L)

As demonstrated in section 1.2.1, the relation of
a dimensionless expression of an operating
condition, such as n; or S, to design and flow
parameters can assume many different forms
depending on the parameters that are considered

an/z 1 < (ﬂ >3/4
2g,Hy,

(1-46)
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most useful. Equations (1-43) to (1-46)
demonstrate this fact with respect to the suction
specific speed. Other forms for the suction specific
speed can readily be obtained.

For example, with respect to cavitation, the
relative velocity on the low-pressure side of the
rotor may well be of major importance. The
velocity diagrams shown in figure 1-7 indicate that

wi=(U;-Vy )2+ V2 = U?

~2UiVy,i+ Vi + V2,

Hence

2 Vui V3. V: .
Wig-2ZUiy TUiy my _
U U "o T U (1-47)

Obviously equation (1-44) can be written in the
form

T 21/441/2\2g,Hy,
32 172 172
(4 () (-5
Wi U; D?

Substituting for U;/w; from equation (1-47) yields

3/4
Se 1 ( w? )
21747172\ 28, H,

(Vm,i/U)V2(1 = D} /1 D?)1/2

[1-2(Vy U + V3, Ui+ Ve, U4
(1-49)

X

which may be of considerable value since,
according to equation (1-42),

28,Hgy v?
= > =, 4 +0 1-50
w2 b2 0P ( )

! !

Thus w,?/ZgoHsv is calculable for given velocity
diagrams (see fig. 1-18).

The general combination of equation (1-42) with
the specific speed equations involves the following
steps:

280,H, _ V2 w2
h{jz =C) EIZ to, UIZ (1-50a)



and V?=V} +V2 ., according to the velocity
diagrams in figure 1-7. Hence combining the last
expressions with equation (1-47) gives

2 2
28,Hy, =C < VU,i + Vm,i
U? v U?

VU,i V%/ Vz.
+0p<1 ottt

H 1

! (Vm,i/ UV2(1 - D}/D3)172
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or
28,Hy, v, Vi,
2078 (0 +o, )| Ui 4 T

Vi
+ap(l—2 U;‘)

By substitution of the last expression into equation
(1-44), one obtains

21/47172

For zero prerotation (i.e.,
(1-50b) reduces to

Vyi=0), equation

1

S= tanin

« Vm,i/UnV2(1 — D /D2

(1-50¢)
[(C1 +0,)V2, /U +0,]34
and equation (1-49) assumes the form
2 3/4
o (2l
217472172\ 2g,Hg,
. 31/2¢1 — p2 2y1/2
« (Vm,i/U)"2(1 - D}/D}) (1-492)

A+ V2 UH¥4

which follows in this case immediately from
wi=Ut+ Vii

It should be clear that equations (1-43) to (1-50c)
and (1-49a) represent simultaneous and inter-
dependent relations. Figure 1-18 represents these
relations in one diagram for Vy;=0and C, =1.1.
For any particular value of C; and of g, the
suction specific speed reaches a maximum at one
particular flow coefficient. This relation changes

(1-50b)

f(c, +0p) (Vi1 U2+ V2, 1 UD) +0p[1-2(Vy,1/U;) ]}

relatively little with moderate rotation of the
absolute flow on the suction side of the rotor.

It may be of interest to review briefly the way in
which the concept of suction specific speed was
originally developed in the United States (the earlier
derivation by Bergeron in France was not published
and is therefore not known to this writer). This part
of section 1.2.2 is not used later and may therefore
be skipped in reading this chapter.

It is stated previously that the Thoma parameter
op=Hy,/H was the first widely used, dimen-
sionless expression of H,, (or NPSH). This
parameter is known to be constant for similar flow
and cavitation conditions in similar turbomachines,
which means that it can be the same for machines of
the same basic specific speed (although it does not
necessarily have to be the same, as the same basic
specific speed can be achieved by machines of

y dissimilar designs and flow conditions). It was thus
natural to ask in which way oy would change with
changing basic specific speed. This question implied
a comparison between dissimilar turbomachines. It
had always been empirically known that the value
of oy required for satisfactory performance
increases with increasing specific speed, but an
analytical relation was not known.

A solution of this problem was obtained by the
assumption that in the field of low and medium
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Figure 1-18.—Relations among cavitation parameters of turbomachinery. Meridional velocity, V., ,;; relative

velocity, w;, rotor velocity at periphery of low-pressure passage of rotor, U;

eripheral fluid velocity at this point

is zero); curves of constant cavitation number o,, derived from H.,, =C,| i/ 280)+ 0, W12, with C; = 1.1.

specific speeds the low-pressure and high-pressure
sides of the machine, particularly of its rotor, can
: be considered and changed independently of each
other and that the head H is determined primarily
by the high-pressure side and H, primarily by the
low-pressure side. If this is true, H can be changed
without changing the required H;,. Thus Hy, is
independent of H when the basic specific speed is
changed by changing only the high-pressure side of
the rotor (say, its outside diameter).

The unknown functional relation between oy
and n; was hypothetically written in the form

o gy = constant X n

where x is an unknown exponent. Explicitly

24

be
Hyy = constant X i
H (g, H)3/4
Hence
X
Hg, =constant x H _n\/_L (1-51)
(8o H)

For Hy, not to change with H requires that H cancel
out of this expression, which is possible only when
x =4/3. Then equation (1-51) assumes the form

(m/_Q)4/3

Hg, =constant x
8o

and, therefore,



(n\/_Q)4/3

=constant
8oHs,

which is readily recognized as the 4/3 power of the
suction specific speed (eq. (1-36)).

A test of the general validity of this reasoning was
obtained by plotting the oy values of commercial
pumps with satisfactory performance with respect
to cavitation against the basic specific speed (fig.
1-19). This plot shows remarkably good agreement
between the data points and the direction of the
lines for constant suction specific speed S. This
agreement even persists into the field of high
specific speeds, where the previously mentioned
separation between the high-pressure and low-
pressure parts of the rotor cannot be generally
accepted. On the basis of this empirical evidence, it
has become customary to regard the suction specific
speed S as independent of the basic specific speed
ng. This particular view of S cannot generally be
valid, however, because dimensionless expressions
of operating conditions, such as S, should be
functions of the specific speed, that is, of the
general design form of the machine concerned.

§1.2.2

According to figure 1-19, the suction specific
speeds of commercial pumps are limited to values
below 0.7 (12 000 in dimensional form). This is not
generally true, as condensate pumps are regularly
used up to S=1.75 (30 000), which permits
considerable local cavitation. Rocket propellant
pumps with special inducers are used up to about
§=2.5 (43 000), and for liquid hydrogen much
higher values have been achieved. Again, such
pumps operate with considerable local cavitation
but without excessive detrimental effects on their
efficiency. However, one cannot assume that the
points plotted in figure 1-19 represent truly
cavitation-free performance. Most points for
suction specific speeds over 0.4 (7000) represent
operation with some local cavitation but without
significant detrimental effects on hydrodynamic
performance (efficiency). Nevertheless the existence
of local cavitation can be important with respect to
cavitation damage.

In this compendium, the suction specific speed S,
like the basic specific speed ng, is derived and used
in dimensionless form, with » measured in rps, Q in
cubic feet per second, and H in feet, and with H
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Figure 1-19.—Points of acceptable pump performance with respect to cavitation. For total pump head H for multistage pumps,
only first stage Is considered, total inlet head Hy, above vapor pressure of fluid pumped is referred to centerline of impeller; for
double suction pumps, one-half of total capacity of pump is used for calculating n; and S.
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multiplied by g, =32.2 feet per second squared.
Any other consistent system of units gives the same
values for S. The relation of the conventional
suction specific speed to the dimensionless S is, of
course, the same as that given by equation (1-21)
for the basic specific speed:

n(rpm)[Q(gal/min)]!/2

=17200 5
[Hgp (F)]34

(1-52)

1.2.3 General Relations Between Dimensionless
Operating Conditions and Design Parameters

In the preceding sections 1.2.1 and 1.2.2,
dimensionless expressions of the operating
conditions n, Q, H, and H,, are derived in the form
of the basic specific speed ng =nQ!/2/(g, H)3/4 and
the suction specific speed S=nQ1/2/(g,Hy,)34.
These dimensionless operating conditions are
related to combinations of dimensionless flow and
design parameters (eqs. (1-24) to (1-31) and (1-43)
to (1-50c)).

Certainly n, Q, H, and H,, are not sufficient to
describe the operating conditions of turbomachines
in general. Additional variables are required to
describe the operating conditions relative to
compressibility, viscosity, stresses in the solid parts,
accelerations of the entire machine (such as
gravitational acceleration), vibrations of the
machine, and probably others.

There are various ways in which these additional
variables can be taken into account. One way,
analogous to forming the Thoma cavitation
parameter (o =Hy,/H), is to form dimensionless
ratios of the variables describing the additional
phenomena to one of the variables already used in
similarity relations, such as the head of the machine
H. For example, similarity with respect to
compressibility would be satisfied if the head H of
the machine had a constant ratio to an enthalpy
difference expressing the compressibility of the gas.
An expression of this type, corresponding to the
Thoma cavitation parameter oy =H,/H, is

aZ
8oH

where a is the velocity of sound at some point in the
machine. Of course, other forms of this expression
can serve as well, for example, one in terms of a
head Mach number Vg, H/a.

Instead of proceeding in this manner, this
presentation uses the principle involved in forming
the suction specific speed. With respect to

= constant (1-53)
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compressibility, one can form a compressibility
specific speed n,=nQ'2/a3/2, since nQ!/? is
already recognized as the 3/2 power of a velocity
representing the rate of rotation as well as the rate
of flow of the machine. The compressibility specific
speed can also be derived in the same manner as the
basic specific speed by eliminating the linear
dimension D, that is, by combining Q/nD3
=constant with a suitable dimensionless ratio
involving the new variable to be considered, such as
a/nD or aD?/Q. For instance,

Q n3pD3 B an
nD3 a3 a3

or, written in the same form as other specific
speeds,

= an/z
a=
a3’2

(1-53a)

The compressibility specific speed n, is defined as
that combination of operating conditions which, if
held constant, permits similar flow of a
compressible fluid in geometrically similar
turbomachines provided that the specific speed is
also held constant. Since the volume rate of flow Q
changes for a compressible fluid within the
machine, Q must obviously be measured in
similarly located cross sections of the machines
compared. It is customary to use the volume rate of
flow on the low-pressure side of the machine (inlet
for compressors, discharge for turbines) and to
compute p for the stagnation conditions of this
stream.

The speed nf,/ 3 may be written as a generalized
Mach number of the form (nQ1/2)2/3/q. Thus the
equation n, =constant is a generalization of the
previously mentioned condition of similarity that
the effects of compressibility are the same if the
Mach number at geometrically similar locations has
the same value. The condition n, =constant has the
advantage that n, can be calculated before any
specific information is available on the design of the
machine.

Setting
_ U
"= =D,
and
D¥r D?
= ~h
o-ra, % (1- )



one finds in the same manner as for the basic
specific speed

372 /2
n="20 L (L) (DY
@7 @32 ag12\ a D,

172 172
x<@> ]__’j_
U; D?

or, for the suction side of the rotor (inlet of
compressor rotors),

3/2 172
(4
“T 22\ a U;

2 172
X (1 —9—"5>
D;

Of course, a Mach number based on the fluid
velocity may be used in the right side of equation
(1-54) instead of one based on the peripheral
velocity of the rotor. For example, when the
meridional fluid velocity ¥, ; is used,

_nQi2 <Vm"_>3/2

ng= =
03/2 21‘.1/2 a

, 2\ 172

The Mach number usually considered critical is
that of the relative fluid velocity w entering a rotor
vane system. It is considered in this section with
respect to a compressor or fan. The applicable
relations are the same as those derived in section
1.2.2 for the suction specific speed. Specifically,
equation (1-49) appears in the form

an/Z_ 1 (w‘.>3/2

a

(1-54)

(1-55)

(1-56)

(Vm,i/ Up\/2(1 - D} /D)2
(1=2Vy,1U;) + V31 UR+ V2, U4

(1-57)

where the notation is that given by figure 1-7.
For zero prerotation with V;; =0,

§1.2.3

. _nQ2 (w,.)s/z
T @2 apin2z\a
o« Vim,i/Up"2(1 - D}/D}) 172
(A+V2 ,/UH34

(1-58)

which corresponds to equation (1-49a).

———————

Viscous forces can be introduced in the form of a
viscous shear stress given by

T=constant X 4
= ﬂ —
D

=constant X un

nD
= constant x [LT

Its ratio to inertial forces may be written in the form

un
pn2D?2 D2

which is obviously the reciprocal of a Reynolds
number. In such an expression, one might also use
the head H of the machine to obtain the form

un ny

pEoH g H

which is the reciprocal of a head Reynolds number
and is analogous to the Thoma parameter
o =Hg,/H in the cavitation field.

One can also form a viscosity specific speed by
eliminating D from »/nD? and Q/nD3:

. _nl74Qu2  pQl122
g p3/4 (nv)3/4

(1-59)

This equation is dimensionally correct because the
kinematic viscosity » has the dimensions L2/7, so
that nv has the dimensions L2/72, like g, H.

A constant value of the viscosity specific speed 7,
permits similar flow of a viscous fluid in similar
turbomachines provided that the basic specific
speed ny is also held constant.

The relation with flow and design parameters is
obtained in exactly the same manner as those for
other specific speeds:

~ an/z _ x1/4 (U0D0>3/4(Di )3/2

= (nv)¥/4 T2 v D,

D,
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or

/2
o 7rl/4<U,'D,'>3/4(Vm’,‘)l
- 2 v U,'

2\ 1/2
X (1—2’i>
D?
i

If it is more desirable to refer the Reynolds
number to the meridional velocity ¥, ; than to the
peripheral velocity U, or U; of the rotor, the
viscosity specific speed may be related to flow and
design parameters in the following manner:

_ nQ1/2 _ xl/4 ( Vm.iD; )3/4
v (nv)3/4 2 v

(1-61)

The foregoing modifications of similarity
relations cover the fluid-dynamic aspects of the
problem. The basic operating conditions n, Q, and
H are considered in terms of the basic specific speed
and other similarity relations given in section 1.2.1.
Also considered are departures from the basic flow
conditions due to cavitation (in sec. 1.2.2) and due
to compressibility and viscosity (in this section). In
general, two conditions have to be satisfied by the
operating conditions to have similar flow in similar
machines, one with respect to the basic flow
(ns = constant) and another with respect to each of
the departures from the ideal conditions (e.g.,
S=constant or oy =constant with respect to
cavitation, n,=constant or vg,H/a=constant
with respect to compressibility, and », =constant
or g,H/vn =constant with respect to viscosity).

It is significant that the various conditions of
similarity with respect to departures from the basic
relation ng = constant do not all have to be satisfied
at the same time. Certainly the requirement of
similarity with respect to cavitation (S=constant)
does not have to be satisfied simultaneously with
the requirement of similarity with respect to
compressibility of gases (n, =constant) as these
generally apply to different kinds of fluids (the
former to fluids capable of vaporization (liquids)
and the latter to fluids subjected to major changes
in volume (gases)). Thus only one, §=constant or
n, =constant, needs to be satisfied at a time.
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Fortunately the viscosity of the fluid is rarely
important with respect to turbomachinery, because
the flow is usually fully turbulent, so that the shear
forces (i.e., fluid friction forces) follow the same
law as other inertial forces in the machine. Thus
these forces can be included in the treatment of
other hydrodynamic forces in the machine.
Therefore it is usually not necessary to consider the
condition n, =constant separately in similarity
considerations on turbomachinery, and this
condition is usually neglected.

In addition to fluid-dynamic relations, it is of
equal importance to consider some purely
mechanical relations, that is, relations involving the
mechanics of the solid parts of the machine.

First consideration must be given to the
mechanical steady-state stresses in the solid parts.
For reasons of similarity, such stresses are
proportional to the loads per unit area applied to
the structure. Hence any stresses generated by the
fluid in the solid parts of the machine are
proportional to the fluid-dynamic pressure
differences applied to these parts. For example, the
bending stresses in turbomachinery blades are
proportional to the fluid-dynamic pressure differ-
ences applied to these blades. (The distribution of
these pressure differences does not change under
similar flow conditions.)

This similarity of stresses in solid parts to
pressure differences in the fluid goes farther than
this. Centrifugal stresses ¢, are proportional to
ps U2, where pg is the mass per unit volume of the
solid parts of the machine. It is shown in section
1.3.3 that the ratio o./p;U? depends primarily on
the dimensionless geometric configuration of the
rotating part. For example, a./p,U2 =1 applies to
a thin freely rotating hoop. For a radial strut of
constant cross section, the maximum stress at the
axis of rotation is given by the ratio g./0;U? =0.5.
Thus all steady-state stresses in similar solid parts
are (under similar flow conditions) proportional to
the dynamic pressure differences in the machine, as
they follow the same law, modified by the specific
mass ratio between the structural material and the
fluid:

0. =constant X (gﬁ )pf(ﬂ
/

The structural stresses ¢, insofar as they are
generated by dynamic forces within the machine,
could be made dimensionless. For example, the
stress ¢ could be divided by the total-pressure rise



across the machine o/psg,H. However, one could
also introduce a stress specific speed by eliminating
D from a stress coefficient such as ¢/pn2D? and
from Q/nD3 to obtain

Q (anDZ )”2 n2Q
nD3 o h (o/p)3/2
or
172
o= L (1-63)
(0/p)3/4

In these equations, p is the mass density of the fluid
if the stresses considered are fluid-induced stresses
as, such as the bending stresses in blades or the
casing stresses present if the so-called gage pressure
on the low-pressure side of the machine is
negligible, or p is the mass density of the solid
rotating parts of the machine if the stresses
considered are stresses generated by centrifugal
forces o..

Similar to other specific speeds, n, is that
combination of operating and stress conditions
which, if held constant, permits similar stress
conditions in similar machines provided that the
basic specific speed n; is also held constant.

The specific speed n, may be related to design,
stress, and flow parameters of the machine in
exactly the same manner as done previously with
respect to fluid-dynamic characteristics of the
machine. One may write an equation analogous to
equation (1-24):

3/4 3/2
2 () ()
’ (a/p)3/4 21412\ 20 D,

(1-64)

This expression is probably most advantageous
when centrifugal stresses o, are being considered,
since pgU2/20, is useful in making the centrifugal
stresses in rotating parts dimensionless (o being the
mass density of the structural parts). This is
discussed further in section 1.3.3.1.

For fluid-induced stresses oy, it may be more
advantageous to make oy dimensionless by means
of a fluid velocity, for example, V,, ;; this method
leads to the expression

§1.2.3

__nQVz 1 (prrzn,i>3/4 Ui
¢ (07/pp)3 T 2l/4g12\ 205 Vim,i
5\ 172
X (l—%) (1-65)
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If, instead, it is deemed desirable to make of
dimensionless by means of the relative velocity w;
at the low-pressure side of the rotor, one can derive
the following expression in exactly the same manner
as equation (1-49):

ngl2 1 (ELW_% )3/4

ng= (077074 ol/4g172 \ 20f

(Vim,i/UD"/2(1 = D} /D172
V=2V, Up) + V3 iy U V2, UB
(1-66)

X

This equation is easy to simplify for zero rotation of
the absolute flow by setting V¢ ; =0.

It should be noted that steady elastic
deformations & are proportional to steady stresses,
specifically that /D = constant x (¢/E), where E is
the modulus of elasticity. Steady elastic
deformations are, therefore, included in the
foregoing similarity considerations, but other
deformations (e.g., thermal deformations) are not.

The second mechanical effect that is treated in
the same manner as the previously discussed flow
and stress phenomena is the effect of the
acceleration of the system as a whole (e.g., the
effect of gravitational acceleration). Generally this
effect is considerable only for very large machines.
For example, the gravitational static-pressure
difference between the highest and the lowest points
of a large hydrodynamic machine with a horizontal
shaft may well be sufficient to require consideration
in connection with cavitation. Gravitational
deformation of helicopter blades is very common
and requires careful attention. Even in machines of
moderate size the effects of a large general
acceleration can be considerable, as, for example,
during the launch of rockets or missiles. A turbojet
engine at the tip of a helicopter blade may be
subjected to exceedingly high centrifugal and
Coriolis accelerations.
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The force due to acceleration of the system as a
whole is obviously proportional to goD3, where gis
the general acceleration of the system as a whole
and, for a machine at sea level on Earth without any
acceleration of the entire system, is equal to 32.2
feet per second squared. Generally speaking, g is a
variable, equal to the true gravitational acceleration
added vectorially to the kinematic acceleration of
the system as a whole.

On dividing the inertial forces by the force due to
a general acceleration g, one obtains the square of
the familiar Froude number in the form

p(n®’D?)D?  n2pD _niDp?
pgD3 g gD

(1-67)

Combining this expression with Q/nD3, one can
eliminate the linear dimension D and obtain the
following:

<n21)>3 Q _n’Q

8 nD3 g3
or

nS/ZQl/Z 3 an/Z n
- — g
g3/2 (g/n)3/2

(1-68)

which is named in this compendium the gravity
specific speed, where the word gravity refers to any
general acceleration of the system as a whole.

The gravity specific speed is that combination of
the operating conditions n, Q, and g which, if held
constant, permits similar conditions in similar
machines provided that the basic specific speed ny is
also held constant.

As previously the inertial forces can be expressed
by the head H of the machine in the form
ps8oHD?. Dividing by the force of the general
acceleration pgD3 leads to

2
M = ‘_)-[ g_a I_{ =constant

ogD? p gD (1-69

as the condition of similarity for turbomachines
under the general acceleration g. If forces in the
fluid (pressures) are being considered, the general
density p is set equal to p 7, 50 that the condition of
similarity reduces to g,H/gD=constant and for
&=g, reduces to H/D=constant. That is, the head
must change proportionally to the linear
dimensions of the system. This is a form of
Froude’s law of similarity, which is well known in
the field of large hydraulic turbines.
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If the forces in the solid parts of the machine are
being considered, the effective density is p = p; —pf
Oor p=p,, depending on whether the solid parts
considered are submerged in the fluid of density p 7
or not.

Similar to the previously discussed specific
speeds, n, has the advantage over the ratio
ps8oH/0gD that it can be calculated before the size
D of the machine is known. Furthermore n g can be
related to design and flow parameters of the
machine in the same manner as the other specific
speeds:

or

or

Which form is used depends on which form of the
Froude number (U2/gD or V2/gD) on the right side
turns out to be most convenient for the design
procedure chosen. These expressions for ng do not,
of course, exhaust the many ways in which ng can
be related to flow and design parameters.

e ——

The last mechanical relation to be considered is



that of mechanical oscillations or vibrations. The
most obvious relation is that of the so-called critical
speed n., of the machine to the speed of rotation 7.
This relation can also be brought into the form
previously used.

It is generally known that for the same material
the natural frequency of similar vibrating structures
is inversely proportional to their linear dimensions.
This relation may be derived as follows:

The weight W of a structure is obviously
W =constant X g,psD3, where D is any repre-
sentative linear dimension of the structure or
machine. Its deformations are &g =constant
X 0, D/E, where E is the modulus of elasticity, and
the stress produced by the weight of the structure is
o, =constant X W/D? =constant X g,psD. Thus
the deformation of the structure under its own
weight is

goPsD2

E (1-73)

6g = constant X

The natural frequency f of a simple structure (a
mass on a spring) is known to be

f=constant X \/g—" (1-74)
g
Therefore, according to equation (1-73),
E 1
=constant X \/ = - -
S \/ o D (1-75)

which proves the statement that the natural
frequencies of similar structures are inversely
proportional to the linear dimensions D of the
system.

The fluid-mechanical frequency of a
turbomachine is obviously proportional to its speed
of rotation n. For example, its blade passing
frequency is 7N, where N is the number of blades.
The relation of the fluid-mechanical frequency to
the natural frequency of the same system treated as
a vibrating solid structure is obviously expressed by
the ratio

= constant X

n
7 -7
f VE/ps ¢ ©
where p, is some average mass density of the
machine or of the part of the machine considered in
this section (e.g., its rotor).

According to the kinematic condition of
similarity,

§1.2.3

Q2

nD

=constant

or

1/3

=cons X =—
D =constant 173

Substituting this into equation (1-76) gives

nQ1/3

nl/3,/E/ps '

=constant X

~lx

n2/3Q1/3

-_x 1-77
(E/ps)!/2 4=

=constant X

This equation can be written in the form of a
specific speed by being raised to the 3/2 power:

n\372 nQ1/2
- =constant X ————

S (E/ps)3/4 =78

The specific speed n, =nQ'2/(E/ps)3/4is named
in this compendium the vibration specific speed.
The equation n, =constant describes all
combinations of operating conditions and
mechanical properties of the machine permitting
similar vibration behavior of the machines
compared (e.g., a constant ratio of the speed of
rotation to the critical speed) provided that the
basic specific speed is also held constant.
With

U

" Drx

and

one finds

2

172 3/2 1/2
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Therefore
nQ!”2 1
T (Elp)d 21Ag12

12
) p U2 3/4(Vm,i>”2<&>3/2 I—D—%
2E U, D D2

(1-79)

v

By analogy to the cavitation parameter oy, the
similarity relation n, =constant can also be
expressed by the ratio
E/pg E

= =constant

1-80
goH psgoH ( )

that is, by the ratio of the modulus of elasticity to a
pressure proportional to the head of the machine,
which is a constant. Evidently

3/4
_ PsgoH
mo=ns\E

The ratio p,U2/2E in equation (1-79) has, of
course, the equally simple meaning of a velocity
pressure p,U2/2 of the mechanical velocity U
divided by the modulus of elasticity F.

If, according to equation (1-75), E/p; is replaced
by constant x (Df)2, the vibration specific speed
(eq. (1-79)) may be written in the form

nQ2  constant (g )3/2
Df

(1-81)

B (E/p)3/4 B 2rl/2

172 1/2
(K@_) D;(, D}
U D Df‘

where U/Df is obviously a Strouhal number of the
machine.

n,

(1-82)

The specific speeds described in this section and
their most important relations to design parameters
are listed in table 1-1. It is evident that all specific
speeds and their relations to design parameters
follow essentially the same scheme.

As stated previously, the specific speed, or any
variation with respect to the force considered, is the
3/2 power of a velocity ratio, that is, the kinematic
velocity (nQ1/2)2/3 divided by a velocity repre-

senting the force action to be considered. For an
ideal fluid, this velocity is (g,H)!”2, which
represents inertial forces and leads to the basic
specific speed ng; with respect to cavitation, this
velocity is (g,Hg, )12, which represents inertial
forces connected with cavitation and, thus, leads to
the suction specific speed S; and so on. Only in the
case of the acoustic specific speed is this
representative velocity a physically existing velocity,
namely, the velocity of sound a.

With all these force-representing velocities
designated by (v) (with v always written in
parentheses) all specific speeds can be written in the
form

an/Z

"0

Their various relations to flow and design
characteristics are given in table 1-II, and the
various meanings of the force-representing general
velocity (v) are given in table 1-111. The derivations
of the various expressions in table 1-II are the same
as those given in sections 1.2.1 and 1.2.2 and in the
present section. Thus tables 1-1to 1-111 constitute a
summary of these three sections.

1.3 Dimensionless Design
Forms as Functions of
Design Parameters

1.3.1 Introduction

Section 1.2 establishes relations between
dimensionless operating conditions of turbo-
machinery, the specific speeds, and a number of
design parameters. These design parameters are a
number of flow coefficients (ratios of fluid
velocities V' to peripheral velocities of the solid
rotating parts of the machine U), a number of head
coefficients of the general form 2g,H/U? or
28, H/ V2, certain stress coefficients of the form
pU?/20, Mach numbers, Reynolds numbers,
Froude numbers, Strouhal numbers, and a number
of ratios of linear dimensions.

The next step obviously consists in establishing
relations between these parameters and the design
of the machine. This is clearly the general design
problem of turbomachinery and, therefore,
constitutes the general problem to be solved by this
entire compendium as well as by other publications



TABLE 1-1. - SPECIFIC SPEEDS

Basic specific speed
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on the design of turbomachinery. In this chapter
one can, at best, outline the solution of this broad
problem in order to obtain a general picture of the
relation between operating conditions and design.

§1.3.1

This outline is presented in the order of the level
of knowledge available in the various fields
concerned: first, the fluid-mechanical design of
axial-flow vane systems and machinery; second, the
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fluid-mechanical design of radial- and mixed-flow
machinery; third, the stress-determined mechanical
design of turbomachinery; and fourth, the general
influence of gravity and of vibrations on the design
of turbomachinery (as yet poorly understood).
The treatment of the first two subjects of this
outline can be reasonably definite, because the basic
specific speed and the suction specific speed are
regularly used in the design of turbomachinery,
particularly hydrodynamic machinery. Stress
considerations are extensively applied to the design
of turbomachinery, but not as yet in terms of a
stress specific speed. The treatment of the influence
of gravity and vibrations on the design of
turbomachinery becomes increasingly vague,

because a general correlation between operating
conditions and the weight or vibration parameters
of a machine has never been attempted in the same
sense as correlations involving the basic specific
speed and the suction specific speed. The gravity
specific speed and the vibration specific speed have
never been used and may never be used.

1.3.2 Flow-Determined Design Forms of
Turbomachines

1.3.2.1 Axial-flow turbomachines.—This
section describes the design forms of axial-flow
vane systems as determined by flow coefficients,

TABLE 1-II. - RELATIONS OF FORCE-REPRESENTING VE LOCITIES?
TO FLOW AND DESIGN CHARACTERISTICS

33/2 1 3/2 1/2 2\1/2
L ST
(v)3/2 2171/2 (v) D, U; D12
_3/2 1/2 2\1/2
QY2 1 [ﬂ V_m,i> 1 Ph
(V)3/2 2771/2 (V)_ Ui Diz
1/2
3/2 2
Q2 1 [vm’i] / U Dy
(v)3/2 2771/2 (v) Vm,i Di2
1/2
3/2 h&) 1/2
2
nQ1/2= 1 [_vﬁjl Uy 1_D_h
w32 2,172 [ ) ERY D2
Y i oo i, Vo, Vm i
Y Ui2 v
3/2 1/2 1/2
Q2 _ _1_[3] / Vm, o / 5
w32 o172l U, D,
3/2 1/2 /2 ,1/2
S 2 Voo Do\ A" 1
(V)3/2 m (V) UO Dth DO

4The general velocity (v) may be compared with the head of the machine

in the form (v)z/gOH, as given
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TABLE 1-III. - DEFINITIONS OF FORCE-
REPRESENTING VELOCITIES

For the basic specific speed
_ 1/2
(v) = (g H)
With respect to cavitation
_ 1/2
(v) = (g Hg,)
With respect to compressibility
(v) = a = velocity of sound
With respect to viscosity

) = mn)/? = (U/7D)/2

With respect to centrifugal stresses

1/2

(v) :<&)
pS

With respect to fluid-induced stresses

g 1/2
(v) =(—>
Pt

With respect to any general acceleration
g of the system as a whole

(v)-E -8
n U

With respect to vibrations of the machine
at a frequency f

1/2
il
o

head coefficients, and ratios of linear dimensions.

For axial-flow machines, these parameters are
related to the basic specific speed in section 1.2.1 by
the following equations:

Q2 ( U? >3/4
T (g H)Y4 2147172 \2g,H

12 12
(taa) (o2
U; D?

s

(1-25a)
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and

3/4 372
e s (24)(22)
S al/47172 \2g, H Dy,

172 172
Ui D?

i

(1-26)

where the subscript 1 refers to the inlet side and the
subscript 2 to the discharge side of a pump (or
compressor) rotor, as shown in figure 1-20. For
turbine rotors, the through flow is usually in the
opposite direction; that is, it enters on the side of
the maximum hub diameter. Equation (1-26) has
the advantage that v ; =2g,H/ Uf,'z usually has
fairly well-known limiting values, about 1 for
standard pump and compressor rotors and up to
about 4 for turbine rotors and some exceptional
pump rotors.

Since equation (1-26) is derived from equation
(1-25) by using the relation Uy = U;(Dy /D), these
equations are not independent and constitute only
one relation. Therefore they are not sufficient to
determine V,, /U; and Dy ,/D; even if
2g,H/ U,zl’z is assumed to be given by its empirically
determined upper limits. For liquids, the additional
required relation is usually given by the suction
specific speed in the form

o nQv?2 1 (an_n >3/4
T (goHg)Y4  2V4x1/2\280Hy,

5> \ 172
x Zi (- Ph1
Vin,1 D?

!

(1-46a)

with the subscript 1 defined as previously (fig.
1-20). According to figure 1-18, the optimum
values of 2g,H,/ an’l cover a very narrow band
around 3.5, so that this coefficient can usually be
considered as given. A value for Dp/D; is
assumed (which is not very critical as the square of
this ratio is usually less than 1/4). Equation (1-46a)
or the equivalent figure 1-18 then determines the
flow coefficient ¥, ) /U;, which in turn determines
Dy, »/D; from equation (1-26) and, thus, completes
the right side of this equation.

For compressible fluids, one would use in place
of equation (1-46a) an equivalent expression of the
compressibility specific speed, for example,
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Station

N

Ui we i [
1 |'1 Wi.Z f\wh,z
)Uh,z }
v
h,2
v _ VioVui2 Vu,h,2
LET Yy v -
%Vm, m,?"‘ Vm,Z
v 299092\ ’
|
Dischar%e side of
pump r

Inlet side
of pump
rotor
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- B U Y ) R
1 N h,2
Dy, —_— -
Figure 1-20.—Axial-flow pump rotor profile defining notation.
nQ!/2 1 wiy \3/2 According to Euler’s turbomachinery equation
Ra= a3/ 27172\ a presented in chapter 2, section 2.3, the head

(Vin,1 /U1 = D2 | /D172

(1 =20y, Uy + V3, U+ V2, /U3
(1-57a)

where the Mach number w; | /a of the relative flow
at the blade inlet tip in a compressor rotor is usually
given from experience. The prerotation of the fluid
Vi would have to be known. Under these
assumptions, equation (1-57a) permits the
calculation of V,, ,/U;.

It is evident that the suction specific speed S or
the compressibilty specific speed n, determines the
flow coefficient V,, | /U;. With it the basic specific
speed determines 2g,H/ U,-Z, and with an assumed
(limiting) value of ZgOH/Uf,,Z, also Dy, »/D,;.

On the basis of mechanical considerations of
shaft diameter, it is fairly easy to make the required
assumption of the hub diameter ratio Dy /D; at
the low-pressure side of the rotor. If there is any
rotation of the absolute flow Vy;, at the low-
pressure side of the rotor, this must be prescribed.
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coefficient for pumps is

AVy

=2y U

(1-11)

while for turbines 5, is replaced by 1/7n,. Here
AVy=Vy2-Vy and ¥ may be applied to any
diameter by affixing the appropriate subscripts i;
h,2; or others to ¢, U, and AVy;.

The flow and head coefficients determined in this
way establish the velocity diagrams at stations 1 and
2 at the diameters D; and Dy, under the
assumption that Vg, | =constant over the entire
radial extent of the inlet or low-pressure area
(station 1). This assumption is used in the
derivation of equations (1-25), (1-26), (1-46), and
(1-58) by use of the continuity relation

(-%)

What needs to be known is the rotation of the
absolute flow V¥, at one side of the rotor, usually
the low-pressure side, where V=V ;.

Figure 1-21 shows three typical velocity vector
diagrams for pump or compressor rotors (for which

D",‘-7r
4

2
Dhl

—f, 1

2
Di

Q=Vm,l



usually AVy<U) for the following three
conditions: V=0 (fig. 1-21(@)); Vy,1 >0 (i.e.,
V.1 has the same direction as the rotor motion U)
(fig. 1-21(b)); and Vy ;<0 (i.e., the absolute
rotation of the fluid at the inlet side of the pump
rotor is directed against the rotation of the
rotor)(fig. 1-21(c)).

To illustrate different possibilities, V1=V 2
(i.., Dpy =Dy ) is assumed for figures 1-21(a)
and (), Vi1 <Vpm,2 (€., Dy <Dy ) is assumed
for figure 1-21(b). It is of interest to note that the
absolute velocity vectors V; and V; also describe
the flow leaving and entering stationary vane
systems, with V, being the inlet and V} the
discharge velocities of these systems, if the vane
systems in front of and behind the rotor system
have the same discharge velocity diagrams.

The velocity vector diagrams are shown without
the subscript i or #,2, as they may apply to either D;

AVU AVU
w - |
2 wm/ ’ P Wl
V2 Vi Vm1tVm2
|
@ & u 4

© u

() V=0 Vi =V
(b) l'/U,l >0; Vm,l < Vm,Z-
() V1 <0, Vip 1 =V 2.
Figure 1-21.—Typical velocity vector diagrams for axial-flow
pump rotors.
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or Dy, or indeed to any other diameter D.
Therefore, it is important to examine briefly the
change in the flow and head parameters and the
resulting changes in the velocity diagrams as a
function of the diameter D.

As mentioned previously, in this chapter V,, is
assumed constant with respect to the diameter or
the distance from the axis of rotation. Other
assumptions are possible and are discussed in
chapter 2 but are too complicated to be considered
in this outline.

The basic law to be considered in this section
regarding the circumferential component Vy of
absolute velocities is called the law of constant
angular momentum:
VD = constant (1-83)
with respect to changes in D, that is, changes in the
distance from the axis of rotation. This law is
assumed to hold at the inlet and the discharge
planes of a rotor. Figure 1-20 shows at its right side
the radial distribution of Vy , obeying this law.
Since AV is the difference between two values of
Vy, it must follow the same law. Only by the
application of circumferential forces, as between
the inlet (station 1) and the discharge (station 2) of a
vane system, can the product VD be changed.

Obviously the circumferential velocities U of
solid rotating parts of the machine increase
proportionally to D, so that

g =constant (1-84)

This distribution of U is also shown in figure 1-20.

Therefore, with V,, =constant in any one flow
cross section and by use of equations (1-83) and
(1-84), it is possible to derive from the velocity inlet
and discharge diagrams in any one cylindrical
section (such as that shown in fig. 1-21) the
corresponding velocity diagrams in any other
cylindrical section.

According to equation (1-84) and V,, =constant,
the flow coefficient varies as follows:

(1-85)

The head coefficient varies as follows:
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o= 280H _280H U} _ 2g,H D} )
U2 vz vz U p?
or L (1-86)
voou, v T vz, pi y

where D is any diameter between D; and Dy ;. The
head coefficient ¢ can be evaluated in terms of the
change in the peripheral velocity components AVy
according to equation (1-11), and the tangential
velocities obey equation (1-83).

The inlet and discharge velocity vector diagrams
are, therefore, available in all cylindrical sections if
they are given by equations (1-11) and (1-26),
(1-46a), or (1-58) for any one cylindrical section.

A few words are necessary to justify the terms
axial-flow surfaces, cylindrical-flow surfaces, and
cylindrical-flow sections in connection with a vane
system profile such as that shown in figure 1-20.
The existence of a noncylindrical hub (or a slightly
noncylindrical outside contour) obviously forces
departures from cylindrical flow for nearly all the
flow through such a system. Section 3.3.3 in
chapter 3 shows that a small departure from
cylindrical flow can be treated by dividing the flow
into a cylindrical and a radial component.
However, this refinement should not be considered
in the present broad outline of this design problem.
It is obvious from figure 1-20 that completely
cylindrical sections can be used only between
D=D; and D=D,,, although partially (or
fictitiously) cylindrical vane sections can be used
very well at diameters between Dy, and Dy ;.

With the velocity vector diagrams at any point of
the inlet and discharge vane edges determined by
the design parameters and, thus, by the dimen-
sionless operating condititions n; and either S or
ng, one step remains to be accomplished, which is
the most essential step in this design process, the
design of the cylindrical vane sections from the inlet
and discharge velocity vector diagrams.

The theory of this design process is given in
chapter 2, and the design process itself is described
in chapter 3. For the present outline, it is sufficient
to indicate the existence of such a process.

The simplest approximation, called one-
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dimensional, obviously consists simply in drawing a
smoothly curved centerline of the vane profile
tangent to the relative velocity vectors at the inlet
and the discharge. In reality one has to depart from
this approximation by giving the vanes more
curvature than prescribed by the one-dimensional
approximation. This is shown for pump blades in
figure 1-22, where at the inlet 8, > Bw,1 and at the
discharge 8 <@, ,. The magnitudes of these
departures are given by the theory of axial-flow
vane design in chapters 2 and 3.

Figure 1-22 also shows that the direction of the
blade ends so determined does not prescribe the
entire blade shape uniquely. Changing the
curvature between the inlet and the discharge
portions of the blades allows the locations of these
two portions relative to each other to be varied
substantially. Such changes affect the distribution
of the pressure difference along the blades. For
example, reduced curvature of the vane near its
leading edge reduces the vane pressure difference
over the leading portion of the vane, which is
beneficial for good cavitation characteristics or
good Mach number characteristics of the vane.
However, far more definite methods of relating the
shape of the profile centerline (called the mean
camber line) to the vane pressure distribution are
available. One such method is presented in detail in
chapters 2 and 3. The same method also gives a
systematic relation between the blade thickness
distribution and the pressure and velocity
distribution within the vane system.

Tangent to
| camber line

5w.2~\,_b B P

Tangent to —~
camber line ;,\/‘ <<~ Two camber lines satisfying
b same w) and wy directions
WA o
Tangent — —{ =21~ "W,
k Wy ’/({31 <-B
B gl
e
1

Figure 1-22.—Relation between vane camber line and velocity
vectors.



Thus the inlet and discharge velocity vector
diagrams together with the vane pressure
distribution determine the vane shape within the
accuracy of the available theory and design
methods for such vanes. It is reasonable to assume
that this determination of vane shape will become
entirely definite and unique as the methods of
design are further developed and perfected,
although it is not certain that this degree of
perfection is really justified from a practical point
of view,

Figure 1-23 illustates diagrammatically the
resulting relation between the design form of
straight systems of parallel vanes and the flow and
head coefficients which determine the velocity
diagrams. In this figure, the velocity diagrams are
shown for pump (or compressor) operation with the
exception of the system for ¥ =2 and ¢=0.25; for
the latter system, pump operation is not possible

§1.3.2.1

since it would require an excessive retardation of
the relative flow, as discussed later in this section.
All other configurations shown would be made
usable for pump as well as turbine operation merely
by reversing the direction of the axial velocity and
interchanging the leading and trailing edges of the
vanes, although the configurations for y =2 and
particularly ¥ =4 are used for pump operation only
in exceptional cases. For example, with Yy =4 no
change in static pressure takes place in the rotor
vane system, which accomplishes merely a change
in the kinetic energy of the absolute flow. (The
static pressure changes only in the stationary
passages of such a machine.)

The relation between the vane system design form
and the design parameters thus represents (at least)
a three-dimensional theoretically infinite family of
such vane systems. Two dimensions are the flow
coefficient and the head coefficient, and the third

coefficient,

Flow coefficient,

»
0.25

Flow coefficient,

Figure 1-23.—Vane system design forms as function of flow coefficient and head

coefficient.
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dimension is the vane pressure distribution, based
on the hypothetical assumption that the variations
in this pressure can be represented adequately by a
single variable.

The number of dimensions or variables increases
if the axial velocity component V,, changes from
the inlet to the discharge, either because of a change
in width normal to the sections shown in figure 1-23
or because of compressibility effects. In the latter
case, this additional variable is clearly related to the
Mach number of the flow.

A circumferential velocity component of the
absolute flow on both sides of the vane system
changes the relation between the head coefficient y
and the shape of the system, but does not otherwise
constitute a new variable, as it is only the flow
relative to the system which determines its design
form.

It is doubtful whether the family of vane system
forms shown in figure 1-23 can be represented as a
group in the mathematical sense of this word,
although it would be interesting to explore this
possibility. The conditions, if any, under which this
would be possible might be of practical interest.

Limitations in the flow through axial-flow vane
systems are discussed up to this point only with
respect to the field of cavitation or Mach number
limitations. Yet additional limitations are strongly
implied by the fact that the vanes in the systems
illustrated diagrammatically in figure 1-23 show
limited magnitudes of vane spacing ¢, whereas
preceding considerations are concerned only with
the vane shape. It is obvious that the vane spacing
must not exceed certain upper limits so that the
vane loading stays within practically acceptable
bounds. On the other hand, the vane spacing should
not be unnecessarily close to avoid excessive skin
friction losses.

The loading of turbomachinery vanes can be
expressed in dimensionless form by a lift coefficient
C; defined in the same manner as the Ilift
coefficient for a single vane or airfoil represented in
section 1.1.1 by equation (1-1). The lift coefficient
of any one vane of an infinitely long system of
straight and paraliel vanes is

AVt

o !

CL= (1-87)

where w, is the vectorial mean of the relative inlet

and discharge velocities w; and w, (fig. 1-21), ¢ is
the circumferential vane spacing, and / is the vane
length measured normal to the resultant vane force
(fig. 1-23).

For a single vane or airfoil, C; has an upper limit
of approximately 1.5. For straight systems of
parallel vanes, the upper limit for C; lies between
1.5 and 2.0 provided that the relative inlet and
discharge velocities w; and w5 have about the same
magnitude. If |w;|<|w) |, the upper limit of C; is
lower than this range; if jw,|> |wy |, the upper limit
of Cy is higher (see ch. 2, sec. 2.5.4.3).

It should be obvious that, for any velocity vector
diagram giving the ratio AV /w4, a limiting value
of C; determines a lower limit for the so-called
solidity //¢ of the vane system by means of equation
(1-87).

The previously mentioned retardation of the
relative flow (w; <w;) through a vane system
constitutes an important limitation of the velocity
vector diagrams which can be generated by any
vane system. It has been found expermientally that
wa/wy =0.6 constitutes an approximate lower limit
for the discharge velocity of any rotating vane
system, whereas V,/V| =0.6 expresses the same
limit with respect to stationary vane systems. The
theoretical and empirical background of this
limitation is discussed in chapter 2, section 2.5.4.3.

It is apparent that the previously presented
relation between flow coefficient, head coefficient,
and vane pressure distribution on one hand and the
design form of the vane system profile on the other
has some important limitations. The solidity //¢
must be sufficiently high to keep the lift coefficient
below certain limiting values (eq. (1-87)), and the
discharge velocity relative to the system (wy or V3)
cannot be less than approximately 0.6 of the
corresponding inlet velocity (w; or V), which
excludes an entire region from the field of possible
velocity vector diagrams and corresponding design
forms. This excluded region of excessive decel-
eration is most easily shown in a velocity vector
diagram made dimensionless with respect to w | or
V. Figure 1-24 shows such a diagram for rotors,
and the region inside a semicircle with radius 0.6 w,
is the excluded region for pump rotors. Also shown
is a standard pump or compressor velocity diagram
which satisfies the retardation criterion
(w2/w; >0.6). The dimensionless velocities of this
diagram can easily be transformed into the familiar
ratios with respect to U. In the example given in
figure 1-24, U/w; =1.32; thus
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Figure 1-24.—Diagram showing limitation in retardation of relative flow of axial-flow rotors. For
stationary vane system, absolute velocities V; and V; should be used in place of relative velocities

w; and w;.

AVy _AVy wy 034 _
U~ w U 132 =0.258
and
Vm,l _ Vm,l W] _ 040 _
U ™ w, U 132 =0.303

For the particular flow coefficient and
Jrerotation Vi used in this example, AV /wy
can be increased to 0.465, and, therefore, AV /U
to 0.465/1.32=0.353, before point A enters the
forbidden region inside the circle w, =0.6w;. Then
one can choose a much higher AV; value on the
other side of the forbidden region; that is, one can
turn the relative velocity vector past the axial
direction until w; is again larger than 0.6 w;. This
second velocity vector diagram is also shown in
figure 1-24. It should be obvious that this diagram
permits the determination of the retardation limits
for any flow coefficient, and that there is no such
limit beyond V,,, | /w; =0.6.

The foregoing considerations establish as many
coaxial cylindrical sections through an axial-flow
vane system as desired. However, these sections can

be shifted relative to each other in the axial as well
as the circumferential direction. Thus the entire
three-dimensional vane shape is not uniquely
determined by its cylindrical-flow sections.

Usually this uncertainty is removed by a
geometric process called fairing, by which vane
sections normal to the axis of rotation (or radial
vane sections containing the axis of rotation) are
made to show the vane contours as smooth flat
curves with as few irregularities as possible. This
process, described in chapter 3, determines the
entire vane surface almost uniquely on the basis of
geometric continuity and simplicity.

The simplest geometric condition for this fairing
process is that vane sections normal to the axis of
rotation show contours which are approximately
radial. This condition is a mechanical necessity if
centrifugal blade stresses are important. Under
other circumstances, there may be reasons for
departing from this simple form. (The resulting
fluid-mechanics problems are discussed in chs. 2
and 3, and the mechanical problems in ch. 5.) In
any event, with a sufficient number of conditions
prescribed (number of specific speeds) and
increasing knowledge of the theoretical back-
ground, it should eventually be possible to
determine the optimum vane shape in three
dimensions completely and uniquely from the
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dimensionless operating conditions (the specific
speeds) and the limiting conditions imposed.
While the relative flow in cylindrical sections
through rotating vane systems is the same as the
absolute flow in cylindrical sections through
stationary vane systems, this resemblance between
rotating and stationary vane sections does not apply
to entire vane systems comprising many cylindrical
sections of different diameters. In rotating sytems,
the circumferential component of the relative flow
usually increases with increasing diameter because
of the increasing circumferential velocity U of the
solid rotating parts. However, the circumferential
component of the absolute flow usually diminishes
with increasing diameter, in agreement with the law
of constant angular momentum (eq. (1-83)). These
effects generally give rotating vane systems
fundamentally different three-dimensional design
forms from those of stationary vane systems.

In review, then, the flow and head coefficients
which are related to the dimensionless operating
conditions (the specific speeds) do not determine
the vane shape directly, but rather the velocity
vector diagrams at the inlet and discharge edges of
various coaxial cylindrical sections through the
vanes. The velocity diagrams and the vane pressure
distribution determine the cylindrical vane sections
within the accuracy of available design methods.

The resulting family of cylindrical sections
through the vanes of axial-flow turbomachinery is
not unlimited. The circumferential vane spacing ¢
has an upper limit imposed by the vane lift
coefficient C; =2(AVy/we )(t/)). Furthermore the
velocity vector diagrams which determine the shape
of cylindrical vane sections are limited by the
condition that the ratio of the discharge to the inlet
velocity of any flow section through the vane
system (w3/w) or V,/V|) should not be less than
0.6, since at lower values the active flow separates
from the vanes.

The cylindrical vane sections so determined can
be made to form a satisfactory three-dimensional
surface by a geometric process called fairing. By
this process, the vane contours as seen in plane
sections normal to the axis of rotation are made to
form smooth curves of limited curvature, which are
usually not strongly inclined against the radial
direction.

1.3.2.2 Radial- and mixed-flow turboma-
chines.—This section outlines the relation between
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the design forms of radial- and mixed-flow vane
systems and the flow coefficients, head coefficients,
and ratios of linear dimensions which are
determined by various specific speeds. This outline
is quite analogous to that given in the preceding
section 1.3.2.1 with respect to axial-flow vane
systems, except for the fact that the present subject
is more complex and this outline is, therefore, less
complete.

The design of radial- and mixed-flow vane
systems is described in chapter 4. The flow in such
systems is usually assumed to proceed along
coaxial, curved stream surfaces of revolution, as
indicated in figures 1-7 and 1-25. The flow departs
from axial flow and plane radial flow sufficiently to
make the flow and the design problem truly three-
dimensional. Portions of this flow are frequently
described by developing straight conical flow
sections approximating local regions of the curved
stream surfaces into planes (see section Y-Y in figs.
1-25 and 1-26). A more complete method of
describing the three-dimensional design of such
systems geometrically is given in chapter 4. The
difference between rotating and stationary vane
systems, briefly mentioned at the end of the section
1.3.2.1, is more fundamental for radial-flow
systems, where the flow in the individual flow
sections is quite different in stationary and in
rotating systems.

The relations between the operating conditions n,

High-pressure side
- b~
AL KX |

Figure 1-25.—Radial-flow rotor profile.
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Figure 1-26.—Vane ends of radial- or mixed-flow rotor vane
systems.

Q, and H and certain design parameters of radial-
and mixed-flow rotors are given in section 1.2.1 in
the form of various equations between the basic
specific speed of one stage and the rotor design
parameters, for example,

§1.3.2.2
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where equation (1-24a) is derived from equation
(1-24) by using the geometric and aerodynamic
parameters shown in figures 1-7 and 1-25.

Another equation (eq. (1-31)) relates the basic
specific speed to the stationary flow passages
outside the rotor. For the present, only the relation
between specific speed and the rotor design form is
considered.

Equations (1-24) and (1-28) are used in section
1.2.1 to derive the relation between rotor form and
basic specific speed given in figure 1-8. This
relation is explored in somewhat greater detail in
this section.

Equations (1-24) and (1-28) relate six dimen-
sionless design parameters, V,, ,;/U;, Vimo/Uo,
28,H/U%, D;/D,, D,/D;, and b,/D,, to the
basic specific speed. As for axial-flow machines,
additional relations are needed to narrow down the
design choices, since the number of design
parameters is much greater than the number of
equations available so far.

For liquids under conditions involving the danger
of cavitation, such an additional relation is
available in terms of the suction specific speed, used
in the form

/4
2
go_nQV: 1 ( Vm.,->
" (goHgy)/4 2V/4rV2 \280Hy

(1-46)

This form has the advantage that, according to
figure 1-18, ZgOHsU/an) ; 1s practically a constant
(about 3.5) for optimum suction conditions with
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respect to cavitation. This relation and figure 1-18
are the same as for axial-flow machines and permit
the determination of the flow coefficient V, ;/U; if
one uses D% /D,2 as given by mechanical design
considerations.

For compressible fluids at velocities where
compressibility is important, one may use the
compressibility specific speed, as done for axial-
flow machines, in the form of any equation from
(1-54) to (1-58) to determine V', ;/U; for a given or
assumed value of the Mach number appearing in
the equation. Again Dy/D; has to be determined
from other, usually mechanical, considerations.

With V,,;/U; so determined by cavitation or
Mach number considerations, equation (1-24) gives
the diameter ratio D;/D, if the head coefficient
¢=2gOH/U‘2) is given. This is true with particular
reference to its maximum value 2goH/U(2,,m,-n at
D, min- This is similar to the case of axial-flow
rotors, where 2g0H/U,2,‘2 is assumed to have a
known limiting value. For example, centrifugal
pump rotors with backward-bent vanes usually
have a maximum head coefficient 2goH/Ug, min =1
or slightly more. Radial-flow rotors with straight
radial vanes have 2g,H/ U(Z),mm values of approx-
imately 1.5 for pumps or compressors and approx-
imately 2 for turbines. Further information on the
head coefficient ¥ is given in chapters 2 and 4.

With respect to the flow coefficient V,, ,/U, and
the rotor width ratio b, /D, at the outside diameter
(fig. 1-7), equation (1-28) gives the value of the
product (Vp, o/Uy)b,/D,) without any input
from another specific speed, so that the two ratios
forming this product must be determined by trial
and error. The ratio b, /D, may also be determined
by considerations of mechanical strength (see sec.
1.3.3.1 or 1.3.3.2). The fact that neither b,/D, nor
Vm,o/U, (nor the change in meridional velocity
Vm,o!Vm,i) is determined hydrodynamically is of
major significance for the design of the vane
systems of turbomachines and is discussed later in
this section. The head coefficient 2g,H/ U(Z, in
equation (1-28) is, of course, the same as that
discussed in the previous paragraph with respect to
equation (1-24).

The head coefficient determines the change in the
peripheral components ¥, of the absolute fluid
velocities. For pumps,

28,H |4 VuiU;
Y= o =2 ( Vo _ YUY 1-88
A 02 (1-88)

us
For turbines, the hydraulic efficiency 7, is replaced
by 1/n4. The derivation of equation (1-88) is given
in chapter 2, section 2.3.

With the aid of equation (1-88) the right sides of
the specific speed equations (egs. (1-24), (1-28),
(1-46), and (1-54) to (1-58)) determine the velocity
vector diagrams at any diameter to which these
equations are applied. As in the preceding section
1.3.2.1, a continuous variation of the velocity
diagrams as a function of the diameter D is
obtained by using relations such as V,, =constant,
VyD=constant and U/D=constant for the same
cross section of the merdional flow. The special
conditions V,, =constant and VD =constant are
replaced in chapters 2 and 4 by relations that are
more general, but nevertheless continuous. Thus
the velocity diagrams are determined for any point
(coaxial circle) along the inlet and discharge vane
edges. This situation is exactly the same as that
described in section 1.3.2.1 with respect to axial-
flow vane systems.

Figure 1-27 represents this situation. It shows
points, representing coaxial circles, and lines, for
D =constant, which are located relative to each
other according to the ratios D;/D,, Dy /D, and
b,/D, appearing in the specific speed equations.
Every diameter determined by these equations is
associated (by the head and flow coefficients) with a
definite velocity vector diagram. Figure 1-27,
therefore, represents all the information about the
design of the rotor that can be derived from flow-
determined specific speeds. Still needed is some
rational estimate of the ratio Dy, ;4. /Dg min and of
the direction of the meridional velocity at the high-
pressure side. For pumps, the ratio Dy a4y /Do, min
is often determined by the limits of retardation of
the relative flow along the outer shroud (see ch. 2,
sec. 2.5.4.3).

For radial- and mixed-flow machines, the next
step is the essential process of design, that is, the
derivation of the rotor profile and vane shape from
the information represented in figure 1-27.

For axial-flow rotors, the determination of the
rotor profile as shown in figure 1-20 is almost
trivial with the exception of the determination of
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+Vm,i’

0, min

Do, max

Figure 1-27.—Information on design of radial- and mixed-flow rotors derived from flow-determined specific speeds.

the axial rotor length, which requires considerations
of mechanical strength. For radial- or mixed-flow
rotors, the determination of the rotor profile (fig.
1-25) is not at all trivial as it involves the deflection
of the meridional flow from the axial to the radial
or conical direction. Unfortunately, there is no
definite rule available for the hydrodynamic design
of this profile. This is due to the fact that the
meridional velocity component ¥, of the flow
relative to the vane system is generally smaller than
the peripheral component wy. Thus most flow
considerations (e.g., those concerned with flow
retardation within the blade row) are determined by
the relative rather than the meridional flow.
Furthermore, in many cases, the vanes exert an
important influence on the meridional velocity
distribution, which is, for radial- or mixed-flow
rotors, not the same as that of a purely meridional
flow in a vaneless space of revolution. The shape of
the rotor profile, within the confines of the
dimensions given in figure 1-27, must, therefore, be
determined by rules of geometric continuity and
other considerations which are not very well
defined. For example, the outer contour AB of the

profile shown in figure 1-25 is constructed from
two circular arcs, with the radius of curvature r; at
point B equal to b; =(D; —Djy)/2 and the radius of
curvature r, just below point A equal to b,. These
relations may be generalized to r 2 b at any point of
the outer contour AB. In principle this method can
also be applied to the inner contour of the profile,
except that there the radius r is always substantially
larger than b. Clearly such a rule has some rational
foundation based on the flow in stationary curved
passages and is, therefore, useful as a general guide.
However, such a rule has no rigid general validity
and may well be violated for sufficient reasons. For
example, the axial length m of the outer contour
may well be limited for mechanical reasons (e.g.,
critical speed considerations) or for reasons of
overall arrangement, size, and cost. It is, therefore,
not possible as yet to relate the rotor profile
uniquely to the dimensions given in figure 1-27.
Additional considerations are presented in chapter
4,

The determination of the vane shape from the
velocity vector diagrams is also less definite for

45



§1.3.2.2

radial- and mixed-flow machines than for axial-
flow machines. The velocity vector diagrams, which
can be determined from the specific speeds for any
point of the leading and trailing vane edges, permit
the design of the vane ends on the basis of the one-
dimensional assumption that the relative flow is
essentially parallel to the vanes. Since vane angles
are not very well defined (because of the vane
thickness and the rapid changes of these angles in
the leading and trailing portions of the vanes), this
writer and others prefer to use the normal distance
between the vanes d, and dy in figure 1-26. The
one-dimensional approximation would suggest that
dy/ty=Vy,,/w, and d,/t,= m,o/Wo. Depar-
tures from this approximation are discussed in
chapter 4. These departures are substantial only at
the discharge (outer) vane ends of centrifugal pump
or compressor impellers, where d,/t, is greater
than V,, ,/w, by a substantial amount (about 30 to
60 percent, see ch. 4).

The connections between the leading and trailing
portions of the vanes can be designed on the basis
of geometric continuity and to some extent by
hydrodynamic considerations. The geometric
requirements include a continuous simple change in
the cross-sectional area between the vanes from the
inlet to the discharge. Since this cross-sectional area
is proportional to the normal distance between the
vanes (d in fig. 1-26) times the normal distance
between the shrouds (b in fig. 1-25), vane shape and
profile shape are interconnected. Furthermore,
since the velocity diagrams at the low-pressure vane
edges change rapidly along the vane edge as a
function of D, in figure 1-25 (see also fig. 1-27),
the vane ends as shown in section Y-Y of figure
1-26 change their shape substantially along that
vane edge from the outer to the inner shroud. Thus
the vane is strongly warped within the curved and
axial part of the vane profile. The vane shape is,
therefore, three-dimensional, and it is a function
not only of the velocity diagrams and diameters but
also of the profile shape of the system (fig. 1-25).

As mentioned previously, cylindrical sections
through axial-flow vane systems can be represented
as a family of systematically related vane sections
diagrammatically shown in figure 1-23. Chapter 4
shows that the three-dimensionality of radial- or
mixed-flow vane sections may not constitute an
insurmountable obstacle to this type of repre-
sentation. However, the number of independent
variables of such a family of vane sections would
certainly be greater than that for axial-flow vanes.
The greatest difficulty would probably result from

the deep interrelation between the profile shape and
the vane shape, which might not permit the
separation of the profile design from the vane flow
section design that is so successfully employed in
the axial-flow field. Thus there are real reasons why
the design of radial- and mixed-flow vane systems is
as yet more of a special problem in every individual
case than the design of axial-flow vane systems.

T ————

Just as for axial-flow vane systems, consideration
must be given to the possiblity of separation or stall
in radial- or mixed-flow vane systems. While there
are theoretical reasons why the resulting limitations
in flow and design may be different in rotating
radial-flow systems from those in axial-flow
systems, these differences are not as yet known with
sufficient accuracy to be considered for purposes of
design. Thus there is no other approach open than
to adopt the same limitations for radial- and mixed-
flow as for axial-flow systems (i.e., the existence of
a lower limit of the ratio of flow retardation and a
dependence of the allowable lift coefficient on this
ratio of retardation). (The fact that the ratio of flow
retardation has the same significance for radial-
flow as for axial-flow systems is not self-evident,
but can be proven to be true within the limits of the
present considerations.) Whether the lower limit of
V2/V) or wy/wy is lower or higher for radial-flow
systems than the 0.6 quoted in the previous section
for axial-flow systems cannot be stated definitely.
The relatively poorer knowledge about the flow in
radial-flow systems suggests the use of more
conservative (higher) ratios of V,/V; or wa/wy
than 0.6 for radial-flow systems.

The second limit to be considered is that of the
lift coefficient, which for radial- and mixed-flow
sytems is

C, =2 Yuo=Vu,iDi/Dy t, (1-89)
Weo !
where ¢, is the circumferential vane spacing at the
same outside diameter D, where Vu o is measured
and defined and / is the vane length. There is no
rational reason for departing from the rules given in
the preceding section 1.3.2.1 for limiting values of
C; . Thus equation (1-89) gives an upper limit of
fo /1 (the reciprocal of the solidity) as a function of



the velocity vector diagrams and assumed limits of
CL.

From the foregoing considerations on radial- and
mixed-flow machines, as well as those on axial-flow
machines, it can be concluded that one obtains the
most essential dimensional relations of the rotor
profile and the velocity vector diagrams at the inlet
and discharge edges of the rotor vane system from
the dimensional ratios, velocity ratios, and head
ratios derived from the specific speeds pertaining to
the flow conditions. By appropriate rules of design,
the dimensional ratios determine the profile of the
rotor, while the velocity vector diagrams determine
to a large extent the shape of the vane ends. The
degree to which the flow specific speeds determine
the hydrodynamic design form of the rotor depends
on the state of knowledge available for the design of
the machine concerned. It is reasonable to assume
that for a hypothetical very high state of knowledge
the relation between the specific speeds and the
fluid-dynamic design of the machine would be just
as complete as the degree to which the fluid-
dynamic operating conditions are prescribed. (Sec.
1.3.3 demonstrates the fact that purely mechanical
considerations, e.g., limitations of the stresses in
the solid parts of the machine, also have a very
decisive effect on the design of the rotor.)

As mentioned previously, the specific speeds
which are concerned with flow conditions do not
determine the design of the vane systems of the
machine uniquely. To do so, it is necessary to make
certain design decisions, for example, the choice of
axial, radial, or mixed flow and the choice of the
number of stages to be used. These decisions are
dictated partly by mechanical considerations and
partly by the existence of lower limits of the basic
specific speed given by efficiency considerations.

The rotor design alone does not determine the
design of the entire machine. The flow conditions
on the inlet and discharge side of the rotor have a
strong influence on the design of the stationary
vane systems and passages adjacent to the rotor.
Equation (1-31) describes the effect of the basic
specific speed on the stationary passages outside a
radial- or mixed-flow rotor. Yet these vane systems
or passages are also decisively influenced by other
considerations, particularly by the required form of

§1.3.2.2

guidance of the flow to and from the rotor. Of
primary importance is whether the flow is to be
guided to or from the outside of the machine or
whether the flow is to be guided to or from another
stage. Figure 1-28 gives three examples of these
alternative possibilities. In all three examples, the
specific speed for one stage is assumed to be the
same, as expressed by the similarity of the rotors.
The difference between examples A and B is
dictated primarily by considerations of mechanical
strength with respect to the inside pressure. In both
cases, the flow is ducted away from the pump, or to
the turbine, in a plane normal to the axis of
rotation. For multistage machines, as shown by
example C, the flow enters the next stage and must,
therefore, leave the preceding stage in the direction
of the axis of rotation; this flow pattern demands a
completely different form of the stationary vane
systems. Design forms A and B can also be used for
multistage machines by turning the pipeline
between the stages at least 180°; design C can be

Example C: Multistage pump with vane diffusers (see also figs. 4-61
to 4-63 in ch. 4)

Figure 1-28.—Various design forms of radial-flow machines
having same basic specific speed per stage.
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used for single-stage machines if a discharge (for
turbines, an inlet) coaxial with the axis of rotation is
desired.

The design of all three examples given in figure
1-28 is described in chapter 4. The design of the
diffuser vane systems of example C follows in
principle similar lines outlined previously for radial-
flow rotors in connection with figures 1-25 to 1-27
and in chapter 4 in connection with figures 4-59 to
4-62.

1.3.3 Stress-Determined Design Forms of
Turbomachines

1.3.3.1 Centrifugal-stress-determined design
forms.—In section 1.2.3, the stress specific speed is

related to various design parameters in the
following manner:

0= nQ”2 1 (ﬂjﬁ)sm(&)yz.
7 (a/p)3t  2V/4g172\ 20 D,

(1-64)

The stress coefficient can be used in the form
20/pU3 as well as in the reciprocal form pr, /20,
which has a slightly different physical significance.
The first form 20/pUg makes the stress in solid
parts ¢ dimensionless by means of the velocity
pressure of U, (which accounts for the factor 2). In
its reciprocal form pUg /20, this coefficient
increases with the quality of the structural design
form to resist applied forces with a given allowable
stress, that is, for a given quality of the structural
material (stress-density ratio). In this compendium,
the stress coefficient is usually used in its reciprocal
form.

If the stress o is generated by fluid forces, then p
is the mass density of the fluid. If the stress is
generated by the rotation of the solid parts, then p is
the mass density of the solid parts, as explained in
the next paragraph.

In the present section, the stress o is considered as
generated by centrifugal forces (0=0.), and
therefore, p is principally the mass density of the
solid rotating parts of the machine p;. However, if
these parts are completely submerged in a fluid
rotating at the same angular velocity as the solid

48

parts, their effective mass density is equal to the
difference in mass density between the solid parts
and the fluid (i.e., the effective mass density is
p=ps —py). Since centrifugal stresses are usually of
major importance only when relatively light fluids
(gases or liquid hydrogen) are used, p 7 is neglected
and p in equation (1-64) is considered equal to Ps-
The objective of this section is to explore the
meaning of the right side of equation (1-64) with
respect to the design form of the rotating parts,
particularly the effect of the centrifugal stress
coefficient p; Ug /20, on the design form.

First consideration is given to straight radial
members. Such members include, for example,
axial-flow blades that form so-called straight helical
surfaces (i.e., when their generating line is straight,
radial, and normal to the axis of rotation). Such
surfaces are also used with radial- and mixed-flow
compressors and liquid-hydrogen pumps because
their peripheral velocities are sufficiently high to
demand straight radial elements for their rotating
parts (see fig. 1-29). The mechanical element to be
examined is a straight radial strut rotating about the
zero radius point of its radial extent.

Figure 1-30 shows an element of a radial strut.
The centrifugal force acting on this element is

dF.=rvlpadr=oa—(a+da)o+do)= —ada—ads
(1-90)
where a is an area extending in the circumferential

and axial directions. For a strut of constant cross
section @, da=0. Hence

ro To
pswzjr rdr= —Sr do
5 2 2
Psw (rg—rz,)=p—szgg<1‘:—z)=“r_°0 (1—91)
0

where the subscript o refers to the maximum
distance from the center of rotation and the
subscript r refers to the variable distance r from the
center of rotation.

For o, =0 (zero stress at the outer tip), one finds
the maximum stress at r=0 to be
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Figure 1-29.—Mixed-flow rotor with radial vane elements
(according to F. Lawaczeck (ref. 3) and R. Birman).

Figure 1-30.—Element of
radial rotating strut.

or (1-92)

which is an example of a definite numerical value
for the centrifugal stress coefficient appearing in
equation (1-64).

For a radial strut with variable cross section but
dimensioned in such a fashion that o, =constant
and do, =0, one finds

pswlardr=—o.da (1-93)

r ry da
pswzg ’d’=—0c5r —
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where the centrifugal stress o, is constant radially
(i.e., it exists also in the outermost cross section a;
at radius ry).

Figure 1-31 shows a/a, as a function of r/r; and
pSU‘}/ZaC. It is shown later in this section that
exactly the same relation as equation (1-94) holds
also for the thickness distribution of a rotating disk
having a uniform stress distribution and, therefore,
a radial (and circumferential) stress o, at the outer
perimeter (at the radius ry).

Since the radial strut treated in this section has
(so far) the tensile stress o, =0 at its outer cross
section a; and the radius ry, such a strut must
actually be extended radially beyond r=r; so as to
physically generate (by its centrifugal force) the
stress o, =0 at r=ry. For the special form with
uniform cross section (a=a(r)=a,) between ry and
a larger, maximum radius r,, the radius ratio ry /r,
follows from equation (1-91) for the case of zero
stress (o, =0) at r=r,. Figure 1-32 shows the
distribution of the cross section of this strut with
uniform stress from r=0 to r=r; and radially
diminishing stress from oy at r=r; to g, =0 at the
maximum radius r=r, derived from equation

(1-94)
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Figure 1-31.—Area distribution of radial strut and
thickness distribution of rotating disk, both with uni-
formly distributed centrifugal stress. (Subscript 1
denotes stressed outer perimeter.)
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(1-91) and the following equation:

r% _ 201 N

1- -1 =
’% psUg

or > (1-95)
r% _1_ 201
r_z- 0 U2

0 S~¥o J/
Evidently
psUt _osU5 Ut _psU 1}

Y o U2 o rg

so that equation (1-94), when referred to 7, and U,
rather than to r; and U, may be rewritten

2,2 2,2
psUo i (1l )i & (1-96)
20, rg rg r% ay

The solution of this equation is represented
graphically in figure 1-32. This figure represents the
rotating strut with zero stress at its outer end
(r=r,) and shows the extent of the cylindrical outer
portion of the strut (a=a,=a;) for r; £r<r, and
the portion of constant stress and varying cross
section a/a| for r<ry.

Thus the centrifugal stress coefficient pg U(Z)/ZOC
gives the radial distribution of cylindrical coaxial
cross sections for straight radial rotating members
such as blades with radial blade elements. The stress
specific speed and the stress coefficient so
determined, therefore, supplement the information
presented in section 1.3.2.1 regarding the design of
axial-flow vane systems. However, according to the
relations just derived, the stress specific speed and
the centrifugal stress coefficient apply also to radial
and mixed-flow rotor blades with radial blade
elements (fig. 1-29). It is shown later in this section
that the same stress coefficient can be applied also
to rotor vanes of more general shapes.

——————————nr

The second form of rotating members to be
considered is a relatively thin hoop or cylinder of
the mean radius r. (For somewhat complex radial
cross sections of the hoop, r may be the distance of
the center of gravity of the cross section from the
axis of rotation.)

It is well known that the centrifugal circum-
ferential tensile stress in a thin rotating hoop or
cylinder is
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o.=ps U2

so that the centrifugal stress coefficient is

PsUz _ -
—_ZOC =0.5 (1-97)

This stress coefficient is the lowest appearing in
rotating elements subjected to simple tension.
(Elements subjected to bending can have much
lower coefficients p,U%2/20..) While a freely
rotating thin hoop, or a radially thin cylinder, is not
very frequently used in turbomachinery, it is a good
reference shape to be considered, because it appears
as wearing rings, as outer shrouds, occasionally as
hubs of axial-flow rotors, and so on. If the stress
coefficient in the stress specific speed is as low as or
lower than 0.5, ring-shaped rotating elements are
acceptable, whereas for higher stress coefficients
members extending radially toward the axis of
rotation are required.

The next form of rotating element to be
considered is a disk normal to the axis of rotation.
The theoretically simplest rotating disk is the disk
of constant stress. It is a disk without a central hole,
so that it has to be fastened to its shaft by means of
coaxial flanges. Its thickness distribution as a
function of the distance r from the axis of rotation
is

y(n [psU% ( r2 ﬂ
— =ex -~
Y1 P 20, rf

Centrifugal stress
coefficient,
ps Ugl2o,

Area ratio, ala,

Radius ratio, riry

Figure 1-32.—Cross-sectional area distribution of rotat-
ing radial strut having uniform stress distribution for
r<r;, zero stress at r=r,, and diminishing stress
Sromr,tor,.
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where the subscript 1 refers to the outer
circumference, which has a uniform radial and
circumferential stress o.. The thickness ratio
y¥(r)/y, safisfies exactly the same equation as the
area ratio of a radial strut of constant stress (eq.
(1-94)). Therefore figure 1-31 applies also to the
thickness y of a disk of constant stress, with the
thickness evenly distributed on both sides of a plane
of symmetry which is normal to the axis of rotation
(see also fig. 1-33). The dimensionless shape of the
rotating disk of constant stress is uniquely
determined by the value of its centrifugal stress
coefficient p;U?/20,..

Rotating disks of different shapes have, of
course, different nonuniform stress distributions as
long as their behavior is completely elastic. Thus, a
flat disk of constant thickness with no hole has its
maximum elastic stress in the center, while a disk
with a central hole has its maximum stress at the
periphery of the hole. The latter stress is tangential
to the hole and is at least twice the stress of a disk
with no hole. Fortunately the actual stress
distribution is much more uniform if the disk is
made of a reasonably ductile material because the
regions of maximum stress yield and thus relieve the
stress concentration. As a consequence, the so-
called average stress (an assumed uniform circum-
ferential stress) is of greater practical significance
than an exactly computed elastic stress distribution.
Chapter 5 describes the calculation of the average
stress and of the corresponding centrifugal stress
coefficient. For example, the average stress
coefficient of a flat disk with no central bore, or
only a very small central bore, is approximately
psU2/20.=1.5.

The last form of turbomachinery structure to be
investigated in this section has elements, usually
rotor blades, extending axially from one or between
two disk-shaped shrouds, so that the centrifugal
force acting on such elements has to be carried in
bending.

Figure 1-34 depicts a vane of a radial-flow rotor
which is overhung from a shroud on one side of the
vane, that is, an element of an open radial- or
mixed-flow rotor.

§1.3.3.1

Figure 1-33.—Sketch of axial-flow rotor showing
relation of r,, ry, D;, and D,,.
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Figure 1-34.—Axially overhung vane of radial-flow
rotor.

It is nearly obvious (and it is stated in standard
handbooks) that the maximum bending moment at

the root of the blade per unit length of the blade is
b2
Mg = WT (1-99)

where w, the load per unit area, is

w=hpsrw? sin 8

in which the angle is defined, as in figure 1-34, as
the direction of a tangent to the mean camber line.
Therefore
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b2
Moy = 5 hpgrw? sin 8

The resulting centrifugal bending stress is

Mmax

g0 =
mg,)

where mg; is the section modulus of the vane
(moment of inertia divided by the maximum
distance from the neutral axis) per unit of length of
the vane. Hence the centrifugal bending stress is

_ blhpsrw?sin B

g
¢ 2ms,1

and with rw = U, the centrifugal stress coefficient is

psU2= rms‘l
20,  blhsinp

(1-100)

Approximating the section modulus per unit length
of the vane by m; | = h2/6 gives
osU2 _ hr

20c  6b2sinB

(1-100a)

If the vane is strongly curved, my =h2/6 is, of
course, not a valid approximation of the section
modulus per unit length. Then one uses equation
(1-100) with

_ total section modulus
s1 total vane length

If the vane is inclined against the axial direction,
as shown in figure 1-35, equations (1-100) and
(1-100a) assume the form

ps U2 rmg B hr

= - (1-101)
20,  plhsinBcosa  6b%sinfBcosa

where the last expression applies to mg ; =h2/6.

It should be recognized that this relation neglects
the uniform tensile stress in the blade. Therefore,
for «=90°, the stress coefficient psUz/Zac obeys
the relation given previously for radial struts (eq.
(1-96) and fig. 1-32).

Vanes extending axially between two shrouds of
the rotor, but not consisting of straight radial
elements, can be treated as beams in bending
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Figure 1-35.—Radial section through axially overhung vane
inclined against axial direction.
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Figure 1-36.—Axially extending nonradial vane
supported at both axial ends by shrouds.

between two end supports (see fig. 1-36). The

maximum bending moment is in this case
wh?

Mpax = —

7 (1-102)
where g varies from 8 for end supports without any
bending stiffness to values between about 12 and 25
for more or less rigid end supports. For such
supports, the mechanical complexity makes it
necessary to assume a reasonable g value,
presumably about 15.

All other relations are exactly the same as for the
axially overhung blade. Thus, with the notation
given in figure 1-36

osU2 _qhr 1
20,

(1-103)



Of course, blade inclination against the axial
direction is also possible for rotors with two
shrouds. Then the stress coefficient is given by a
relation analogous to equation (1-101):

PSU2

20,

h r

i_ o
12 b bcos asin 3

(1-104)

In this section, U is the peripheral velocity at the
part of the vane considered, which is often, but not
always, the outside velocity of the rotor U,. If Uis
not U,, the stress coefficient can easily be
converted to the stress coefficient at the outer
periphery by the relation

2 2
psUp _psU% 15

: P (1-105)

If the outermost vane tips are thinner than the rest
of the blade, it is advisable to use an average blade
thickness h over a reasonably long part of the outer
vane portion, because the thicker parts of the blades
can help to support the thinner parts. This average
vane thickness 4 is indicated in figures 1-34 and
1-36.

—————————————

The foregoing considerations permit rather far
reaching conclusions regarding the design of
turbomachinery.

It is evident from figure 1-31 that stress
coefficients psU%/20c>2 lead to excessive disk
thicknesses at the center (r/r; =0) if one does not
permit yielding in the central regions. Even if such
yielding is permitted, the disk cannot have a
constant thickness for which the average stress
coefficient is 1.5. Therefore pg U%/Zoc =2 requires
the disk to be substantially thicker in the central
region than at r=r;. However, r; is often not the
maximum radius of the rotor. Then, according to
equation (1-105), the stress coefficient referred to
the maximum radius 7,is

2 2,2
psUy _ psU
20, 20, ,-%

which is, for example, 4 for pSU%/2oC=2 and
o /I'] \/i

Accordingly, if the hub-tip ratio Dy /D;=r/r, of
the blades is assumed to be 0.75 (see fig. 1-33 for an
explanation of Dy /D;>ryr, = 1/v2), one can read
from figure 1-32 with p;U2 /20, =4 that the area
ratio a/a, for straight radial blades is about 2.5.
This value is a rather severe requirement for the
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blade design. Thus, by considerations of this type,
one can reach a conclusion about a practical upper
limit for the centrifugal stress coefficient
Os U2 /20,, which, as mentioned previously, is
approx1mately 4. (Usually somewhat lower limits
are desirable.)

As a second example, consider a standard
centrifugal pump impeller with backward-bent
vanes extending axially between two shrouds.
Assuming in equation (1-103) the vane thickness to
spanratio h/b=1/4and r/b=D, /2b, =4.2, which
corresponds to the profile shown in figure 1-25,
and letting ¢ =15 and 3=60°, one obtains

psU2 15 42

20, 124x0.866 1.52
This equation shows that the vanes of such a rotor
are substantially stronger against centrifugal forces
than a freely rotating thin hoop. This fact should
give the design engineer some hint regarding the
construction of the side shrouds.

Finally one can draw from the results just
presented some conclusions regarding the mag-
nitude of the stress specific speed n, . in relation to
the basic specific speed. Evidently

3/4 3/4
Moc =< goH ) - <___2g°H ——l"SUZ) (1-106)

ng 0c/ps Ug 20,

Considering the first of the foregoing examples and
assuming that the rotor is a standard axial-flow
compressor rotor, one can estimate that
2g,,H/Uo =0.56 (for Dy/D;=0.75, and with
2goH/U2_1 at the hub). With p,U%/20.=4,
which is the maximum stress coefficient previously
estimated, one finds

”,;’- —(0.56x 4)3/4 =1.83

s

It is, of course, just as easy to calculate the stress
specific speed directly from equation (1-64) by
using an axial-flow rotor with D,=D; and
assuming a value of the flow coefficient V, ;/U;.
The hub-tip diameter ratio Dy /D; is assumed to be
0.75, and with V,,;/U; assumed to be 0.3, the
result is n, . =0.3217.

The second of the foregoing examples leads, with
2goH/U(2, =1, to the conclusion n,./ns=1.36. In
this example, the stress specific speed is most
advantageously related to the basic specific speed in
the form
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ng

_ _nQ”2 =23/4< U2 )3/4
(g, H)4  w1/2\2g,H

172 172
(%) (%)
U, D,

Using Vi o/U,=0.12 (see fig. 1-27), b, /D,
=1/8.4 (as previously), and Uf;/ZgoH:l, one
finds ng=0.1134 (1950 is dimensional form).
Therefore n, . =0.1134x 1.36 =0.1542.

The fact that this stress specific speed is only
about one-half of the corresponding value for the
axial compressor impeller previously considered
reflects correctly the fact that the axial compressor
impeller represents a nearly optimum form of
design relative to centrifugal stresses, whereas a
standard centrifugal pump impeller with backward-
bent vanes certainly does not represent such an
optimum.

1.3.3.2  Fluid dynamically generated
stresses.—Consider the stress specific speed
represented by equation (1-64) (sec. 1.2.3). If the
mass density p in this equation is given the value of
the mass density of the fluid s, then prU? s
obviously a dynamic fluid pressure and o is,
therefore, a stress generated by such fluid pressures
of. In order to relate this stress properly to the
specific speeds, it is necessary to limit the stress-
producing fluid pressures to pressure differences
generated by inertial forces within the machine.
Therefore this section is limited to stresses
generated by this type of pressure difference.

The most obvious stress generated in this manner
is the bending stress in a turbomachinery vane or
blade, produced by the dynamic pressure difference
between the two sides of the blade. This pressure
difference is known to be Ap=CLpfw2/2 when
averaged over the chord length of the blade. Quite
often the lift coefficient C; is varied spanwise in
such a manner that this pressure difference is
approximately constant. With Ap considered to be
the distributed load acting on the blade as a beam in
bending, the maximum bending moment at the root
of a blade held on only one spanwise end is

Apb?l
2

(1-28)

Moy = (1-107)

where b, as previously, is the spanwise width of the
blade (radial width for axial-flow blading) and / is
an average chord length. (See figs. 1-34 and 1-35
for radial-flow blade configurations.) The bending
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stress is

o _ apb2
" Tmg T 2m,

N
3
€

(1-108)

where my is the section modulus of the root section
of the blade. For a twisted blade, the bending force
may not be exactly normal to the neutral axis for
the minimum section modulus of the root section.
However, this discrepancy is not sufficient to be
considered in this section.

As mentioned previously,

2
Ap= C__LL‘; w (1-109)

so that equation (1-108) may be written in the form

2 2
prwé 1 b2]

2 my
or
2
pwe_ 2 ms _
20y T Cr b2} (1-110)

where C; must be determined from the velocity
diagram which is related to the basic specific speed
and to the particular vane under investigation. For
axial-flow vane systems, it is quite satisfactory to
refer C; and w to the velocity diagram of the tip
section.

The stress specific speed as expressed by equation
(1-64) contains the familiar stress coefficient
pr(z, /205. Evidently this coefficient is related to
the coefficient appearing in equation (1-110) as
follows:

pfw2 _ p[Uz2 w2
- 2
20f 2(7f Uo

so that equation (1-110) may be written in the form

erUg =2< F )&

1-111
207 Crow2/ b2t ( )

where U2/C; ,w? must be derived from the
velocity diagram applying to the vanes under
consideration.

—— R —————

If the vane is held on both ends, the only
difference is that



_ Apb?l

Mmax q

(1-112)

where ¢ varies from 8 for completely flexible
supports to 25 for completely rigid supports. In
section 1.3.3.1, a value of g=15 is suggested as a
suitable average value.

With equations (1-112), (1-109), and (1-108),
one finds

2
pwe _ 4 Ms _
20f Cr b2 (1-113)
and

2 2
pYe g Yo s (1-114)

20f _qCLW2 b—z_l

It is of interest to compare the last expression
with the corresponding expression for centrifugal
stresses. For axial-flow rotors, the blade elements
are radial and in pure tension (approximately). For
example, for a radial blade element of constant
cross section, one derives from equation (1-91) for
g,=0

2
";Uo = 12 - (1-115)
¢ l—rp/r;
Dividing this by equation (1-114) yields
psUp/20c _psap _ _ Crw?b?l (1-116)

prU%/ 205  PfOc q(l —rf,/rg)Ugms
which gives a comparison between the centrifugal
tensile stress in a straight radial strut of uniform
cross section with a mass density pg and the bending
stress in a straight helical blade with a radial span
b=(D; —Dy)/2, achord length /, and a root section
modulus mg. Usually 52/> >mj.

Equation (1-116) written in the form

o _py  Cpwr b

-7 = (1-117)
% s q(1-r/r2)U2 Ms

permits a comparison between the aerodynamic or
hydrodynamic stresses o and the centrifugal
stresses ¢, in axial-flow rotor blades with radial
blade elements. Evidently C; w2/g(1 —r,2, /r(z,)Ug is
of the order of 1. Hence, for gases, where ps < <py,
one finds oy <o, unless b2l/myg is of the same
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order as ps/py; this may be true for the radially long
and slender blades used in the initial stages of
aircraft compressors and for fans of aircraft fan
engines. In such machinery, oy may be of the same
order as o.. In all other machinery handling gases,
such as axial-flow compressors with fairly short
blades and radial- or mixed-flow compressor rotors
with radial blade elements (see fig. 1-29), b2//my is
of a lower order than ps/ps, so that according to
equation (1-117) or<o.. For liquid hydrogen,
ps/py may be of the same order as b2i/my, so that
oy/g. may be of the order of 1. For fairly heavy
liquids like water or liquid oxygen, p; is only two to
eight times greater than o, so that b2l/my is nearly
always larger than pg/p7, and, therefore, o7 >0.. In
other words, for heavy liquids the fluid-induced
bending stresses dominate over centrifugal tensile
stresses in radial blade elements.

The same comparison can be made between
centrifugal bending stresses in axially extending
vanes and the aerodynamically or hydrody-
namically induced bending stresses. This com-
parison is furnished by equations (1-103) and
(1-114). Since in the former equation the root
section modulus m; per unit length of the blade is
set equal to A2/6, one substitutes in equation
(1-103) m /I for h2/6. Hence, for axially extending
blades,

psU2/20, _psoy _ gmer  CLwlbl
psU2/20; Pfoc  2hib2sinB qUim;

which simplifies to

g _er r Ciw?

1-118
o, ps 2h U(Z, sin 8 ( )

As g cancels out, this equation evidently holds for
axially overhanging blades as well as blades held on
both axial ends by rotating shrouds. The ratio
Cpw2/U?% sin B is obviously of the order of 1.
Hence the comparison is to be made between ps/pf
and r/2h. For geometric reasons, r> >2h, but this
inequality is usually not as strong as the inequality
b2i> >my in equation (1-117) (except for strongly
curved vanes). Nevertheless the comparison
between fluid-induced and centrifugal stresses is
quite similar to that made previously in connection
with equation (1-117), although centrifugal stresses
dominate in the present case over a somewhat wider
range than in the former case.
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Thus similarity considerations on stresses are
quite comparable for fluid dynamic stresses o5 and
centrifugal stresses o.. The stress specific speeds for
these two origins of stresses are related to each
other as follows:

nQ2/(a,/ps) ¥4 _<€[ p_5>3/4

= 1-119
nQ2 /(a0 "\ o¢ oy (-1

The stress specific speed related to centrifugal
stresses is of primary importance for gas-handling
machines, and the stress specific speed related to
fluid-dynamic stresses is of primary importance for
machines handling fairly heavy liquids. For
machines handling liquid hydrogen, both specific
speeds may be of equal significance.

Instead of using the stress specific speeds, one
can, of course, consider the pressure-stress ratios
ps8oH /0. and psg, H/ay. These ratios may at times
have practical advantages, as, for example, in
considering the hydrodynamic thrust of a
turbomachinery rotor, in which the pressure
difference generating this thrust is (approximately)
pr8oH, the pressure difference generated or used in
the machine. However, the stresses that are critical
with respect to the end thrust are usually those in a
ball or roller thrust bearing, which do not fall
within the scope of this section.

The ratios psgo H/ 0. or prgoH/ oy may be readily
related to the stress coefficients psU /20, and
pSU /207 by considering the head coefficient
1//0—2g,,H/U2 Evidently

2
P8l _ 02U (1-120)

Gf 20f
There is a corresponding expression for centrifugal
stresses, which, however, is not likely to be used
very often.

1.3.3.3 Gage-pressure-determined design forms
(casing forms).—The term gage pressure is
commonly used to express a pressure in the machine
in relation to the atmospheric pressure. By
expressing the amount by which the internal
pressure exceeds the ambient pressure, the gage
pressure represents the pressure difference to which
the casing is subjected.

Generally the gage pressure p,=p—p, is not
accessible by similarity relations, since the inlet
pressure of a pump or compressor, or the discharge
pressure of a turbine, is determined by external
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conditions which may not have any relation to the
action of the machine. For example, a turboma-
chine may be one of several machines operating in
series, and the pressure level in any one of these
machines depends only partly on the head of that
particular machine and to a large extent on the
action of the other machines. Therefore it is not
generally possible to describe the pressure-stress
conditions in the casing of a turbomachine in terms
of the stress coefficient used in the preceding
sections. The gage pressure of a machine is, thus, an
independent operating condition, not generally
related to the operating conditions expressed by
various specific speeds or equivalent similarity
parameters.

Nevertheless a given gage pressure p, inside the
casing can be made dimensionless from a
mechanical design point of view by division by a
characteristic or allowable stress ¢ in the casing
walls. The resulting pressure-stress coefficient p, /o
can be related to certain dimensionless form
characteristics of the casing.

For example, a fairly thin cylindrical casing has,
without effects of its end covers, a pressure-stress
coefficient given by

Eg:
ag

(1-121)

N~

where ¢ is an average stress over the wall thickness ¢
of the cylinder and r is the inner (or average) radius
of the cylinder. (For fairly thick cylinders, this
average stress o has a practical significance quite
similar to that of the average stress in a rotating
disk, which is mentioned in sec. 1.3.3.1, i.e., that
local yielding tends to level out the uneven stress
distribution.)
For a spherical casing,
2t

Pg _ -
&= (1-121a)

which is, of course, rarely used in its exact form,
although an approximation of a spherical shape has
been used successfully in connection with volute
pumps, as is further described in chapter 5.
Spherical walls are advantageously used as parts of
casings or casing covers. Naturally, when only
approximations or parts of a spherical shell are
used, the pressure-stress coefficient must be
reduced below the value given by equation
(1-121a).

The stress in a conical casing wall or cover can be
approximated by a coaxial conical section normal



to the conical wall. With the notation given in
figure 1-37, the pressure-stress coefficient for a
conical wall becomes

t _tCOSOl
'y r

Pg _ _
£ (1-122)

This solution can, of course, be checked by
recognizing that section OA is a conic section, so
that its radius of curvature at A can be determined
accurately as a function of r and «. Another
method is a consideration of surface curvature at
point A.

For flat plates, the pressure-stress coefficient is
approximately
t2

P _ 0
9

ag

(1-123)

where ¢=1.33 to 1.5 if the outer rim is flexibly
supported and g =2 if the outer rim can be regarded
as rigidly clamped. These values apply to ductile
materials (mild steel). For cast iron, g is
approximately 1. Flat side plates or casing covers
can be effectively strengthened by double-wall
construction with radial shear ribs, as is discussed
further in chapter 5, section 5.3.3.

The foregoing equations permit making an
estimate of the volume of the solid casing walls as
compared with the fluid volume in the casing. It is
evident that this ratio increases in first approx-
imation proportionally to the ratio of the fluid gage
pressure to the allowable stress in the casing walls
whenever this allowable stress is reached. This
consideration may be helpful in connection with the
section 1.3.4.

If the gage pressure at the low-pressure end of the

Axis of symmetry i ) N

Figure 1-37.—Conical casing wall.
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machine is quite low compared with the gage
pressure at the high-pressure end, the maximum
gage pressure in the casing can be approximated by
Pg =ps8oH, that is, by the total pressure rise in the
machine.

1.3.4 Gravity- and Vibration-Determined Design
Forms

In section 1.2.3, the so-called gravity specific
speed

x( Ug >3/2(_D_i_>3/2< Vm,i>l/2
gD, D, U,
2\ 172
X <1 —D—"2>
D;

and the vibration specific speed

_oaQ2
C (E/pg)34 21744102

3/4 172 172
x<psU2> (__V"'-"> Dif\_Di )" 59
2F U D D’_Z

are related to various design parameters by these
equations. This section relates the design
parameters appearing on the right sides of these
equations to some elementary design form
characteristics of the machines considered,
specifically the square of the Froude number
Ug /8D, and the vibration or critical speed number
psU2/2E. The latter is transformed in section 1.2.3
into the square of the Strouhal number (U/fD)2,
which involves an unknown constant. The relations
of these design parameters to design forms are far
less definite than relations considered previously,
for example, with respect to the stress specific
speed.

The relations of the gravity specific speed and of
the vibration specific speed to design forms are
treated together because of a deeply rooted
connection between these specific speeds (i.e.,
between considerations relative to gravity
(acceleration of the system as a whole) and to elastic
deformations and vibrations of the system). This
connection should be apparent from the relation

v
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between the natural frequency f of an elastic system
and the deformation &, under the general
acceleration g of the system, which is

g

(1-124)

where 6,/g is obviously the steady-state defor-
mation of the system under the unit of acceleration.
Equation (1-124) applies directly only to a point
mass on a massless spring, but can be applied to
more complicated systems by changing the constant
of proportionality (1/27).

The relation between the square of the Froude
number U2/gD, (where U may be any velocity of
dynamic significance) and the design form is not
obvious and not generally established. Its
underlying law is obviously the so-called square-
cube law between surface and gravitational forces,
which is that surface forces (pressures or stresses)
are proportional to the square of linear dimensions
and mass forces are proportional to the cube of
linear dimensions. With respect to hydrodynamic
and other dynamic forces, this relation is expressed
by the well-known Froude law of similarity:

v . constant w
VeD
or 5

(1-125)

| 4
—= =constant

VeD /

where D may be any convenient linear dimension of
the system.

The lower the Froude number U/VgD or V/VgD,
the greater the influence of gravitational relative to
dynamic forces gpD3/V2pD? =gD/ V2.

True gravitational effects are those that result
from the action of gravitational or body forces. An
example of this type of effect is the difference in
pressure observed at a point on a blade when that
blade is observed at its highest and at its lowest
position (e.g., a blade on a marine propeller or on a
large hydraulic turbine or pump with a horizontal
shaft). The similarity relation is obviously
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force preventing cavitation _ Hg,gp sz

force due to gravity gp fD3
H
= —Ds——” = constant

(1-126)

This relation demands that not only H, but also all
dynamic head differences be proportional to the
vertical linear dimensions of the system, as all
pressure differences due to gravity are proportional
to these distances. This law of similarity is frequently
used with respect to large hydraulic turbines and
quite generally in marine engineering.

Similarity with respect to elastic deformations 6,
under the influence of gravity obviously demands
that these deformations are proportional to the
linear dimensions of the system (i.e., that
6g/D= constant). Evidently

g
b, =constant X ED

and the stress is

goD?

g =constant X = constant X goD

The requirement of similarity with respect to
deformations is, therefore,
pgD

O g L
D = constant X E =constant X E =constant
(1-127)

The well-known deformation of helicopter blades at
a standstill is an example of this type of deflection.
The ratio E/p is encountered later in con-
siderations relative to vibrations and may be
described as a stiffness-density ratio.
Similarity with respect to stresses produced by
gravitational forces obviously demands that

gravitational forces _ goD?  gpD
internal or stress forces  gD2

= constant
(1-128)

This expresses the well-known fact that the
structural stresses due to gravity increase for similar
structures proportionally to the linear dimensions
of the structure, or that the strength-weight ratio of
the material ¢/gp must increase proportionally to
the linear dimension.



According to equations (1-127) and (1-128), an
increase in the size D of the machine leads to an
increase in the relative deformation dg/Dand in the
stress 0. To avoid this increase in deformation and
stress, one must depart from the structural
similarity or change the structural material. For
increasing D, this departure from similarity must
constitute an improvement (refinement) in the
structural form of the machine. This requirement is
well known in connection with increases in the size
of weight-limited structures such as airplanes and
aircraft engines. In turbomachines, this refinement
usually assumes the form of replacing a solid
structural element (e.g., a blade or a shaft) with a
hollow element. An apparently different kind of
structural refinement of turbomachines consists in
increasing only the diameters of axial-flow vane
systems without increasing their axial extent, while
keeping the solidity constant and, thus, increasing
the number of blades proportionally to the
diameters D. This increases the aspect ratio (span-
chord ratio) of the vanes and requires either true
structural refinement or acceptance of greater
flexibility of the vanes.

As mentioned previously, the departures from
structural similarity suggested by the similarity
equations (1-127) and (1-128) are exactly the kind
of refinements which are required whenever a
weight-limited machine is to be increased in size,
since it is usually not acceptable to increase the
weight of the machine by the cube of its linear
dimensions. It is really not the weight but the mass
of the machine that needs to be limited, as the mass
is significant under any acceleration, be it
gravitational acceleration, the acceleration of a
spacecraft in a weightless frame of reference, or a
combination of both.

Under these circumstances, the mass of a given
volume of solid material must be minimized for a
stated strength or load-carrying capacity of the
structure involved. Obviously this means that the
strength-mass and stiffness-mass ratios of the
material must be maximized. For the problem of
form design, these properties of the material must
be assumed to be given, as the task is to find the
optimum form for given properties of the structural
material. Therefore E/p and o/p, where ¢ is an
allowable stress, are assumed to be fixed. To
minimize the mass of a machine, it is obviously
necessary to minimize the volume of the structural
material without reducing its structural strength or
stiffness. The required structural refinement is
discussed previously.
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Without such refinement, the overall volume of
the machine is approximately proportional to the
volume of fluid in the machine. The volume of fluid
passing through the machine per unit of time is Q.
Let the unit of time be the time of one revolution.
The volume passed through the machine per
revolution is Q/n, which may very well be
proportional to the volume of the machine, which
is, in turn, proportional to D3. The familiar
similarity parameter Q/nD3 s, therefore, the
reciprocal of a meaningful dimensionless volume of
the machine.

Dividing the basic specific speed by the dynamic
parameter (U2 /2g,H)** leads to

1/2 1/2 372
() -5(%) (%)
an 2\ U D,

(1-129)

which can, of course, be derived also on
fundamental grounds, that is, on the basis of

n= Ui
B 'n'D,'

and

2 2
Q:Vm,._l?,_w< __D_,,>
Y Di2

Overall weight considerations (i.e., volume
considerations), therefore, do not lead to any new
relations, except that Q/nD> should be maximized.
This coefficient is easily calculated from equation
(1-129) for any given definition of D, and D;.
Evidently

\3
Q2 _9 (ﬂ) (1-130)
an nD,3 D,
where, according to equation (1-129),
Q _ ™ Vmi(y_Dy 1-131
07 U\ D (-13h
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According to figure 1-18, V,, ;/U; diminishes with
increasing suction specific speed, but there is no
reason why it should change with the basic specific
speed. Therefore, for S=constant, Q/nD}
increases primarily with (D;/D,)3; that is, Q/nD3
increases with the basic specific speed, as is evident
from the reduction in the size of a machine with
increasing n, shown in figure 1-8.

The vibration specific speed, equation (1-79),
contains the term (p;U2/2E)3’# on the right side.
Usually the peripheral velocity U is the velocity U,
at the outer diameter D, of the rotor. As stated
previously, the parameter psU(Z,/zE should be
related to the design form of the machine,
particularly its rotor. For simple configurations,
this turns out to be somewhat easier than in the
previously discussed correlation with the Froude
number.

The natural frequency f of a prismatic bar in
bending is

7 / E | / I 1
f=constant X — - =
Ps A2

where [ is the moment of inertia, A the area of the
cross section, and / the length of the bar. The
constant is 0.56 for the first natural frequency of a
rigidly clamped cantilever and /2 for the first form
of vibration of a bar supported on both ends but
not clamped. In the latter arrangement, the second
natural frequency is obviously four times as high as
the first, since the length between nodal points is
/2.

For a rectangular cross section with height 4 and
width b, I=h3b/12 and A4 =hb, so that
1/A=h2/12 and, therefore,

_ constant [E h
I= ps 12

vi2

(1-132)

(1-133)

where the constant is the same as that used
previously.

For a circular cross section with shaft diameter
Dy, I/A=D?*/16 and

f= constant / E Dq
4 ps 2

(1-134)

For a hollow shaft with an inside diameter d;,

2 172
constant E D

= — =1+ = 1-135
4 Ps 12( D§> (1-133)

According to equation (1-132), a more general
expression is

f

E r
JSf=constant x =

o 2 (1-136)
where the radius of gyration of the cross section
r=vVI/A is equal to h/V12 for the rectangular cross
section and D/4 for the circular cross section.

All expressions of natural frequency contain the
factor VE/p,, which appears also in the vibration
specific speed in the form U,/VE/p,. Setting
U,=7D,n and writing equation (1-136) in the
form

N
ps  constant r

one finds
2
Yo =constant X 7 Do r* (1-137)
\/E/ps frn

where the constant has the same value as in
equations (1-132) to (1-136). Thus U, /\/—ETp: has a
fairly clear meaning regarding the form and
frequency of structural members in bending. (Other
forms of vibration, such as torsional vibrations, can
be treated in a similar manner.)

——————————

While it is relatively simple to extend the
foregoing relations to a variety of different
arrangements by changing the constant of
proportionality, there are other variations which
are not covered by equations (1-132) to (1-136).
One important variation of this type is the
introduction of elasticity into the supports of the
vibrating member. For example, it is well known
that the elasticity of shaft bearings, particularly
rolling-contact bearings, is important in calculating
the natural frequencies (critical speeds) of turbo-
machinery rotors. The actual behavior of a rotor in
an elastically supported casing is, of course, still
more complex. In such complex situations, it would
be of interest to explore how far the following



generalization of equation (1-137) would be
applicable:

Uy
= constant
VE/pg
Nn .
X A x function of form parameters

(1-138)

where Nn is the exciting frequency and f (as
previously) is a significant natural frequency
(critical speed) of the system. The exciting
frequency Nn is usually a multiple N of the speed of
rotation n, for example, a blade-passing frequency,
where in the simplest case N is the number of vanes
in one vane system. A relation such as equation
(1-138) is useful as long as the most important
natural frequencies f of the system can be
determined. This is possible in a wide variety of
cases if one accepts approximate solutions and
includes solutions by numerical or graphical
methods. This writer has used for the determination
of the critical speed of shafts the graphical method
described in section 92 of the well-known book by
Stodola (ref. 2) (beginning on p. 446 of its English
translation).

1.3.5 Design Choices in Turbomachinery

In the preceding sections, dimensionless
operating conditions (the specific speeds) are
related to design parameters (ratios) and these to
certain elementary design form characteristics.
However, these relations are not unique.

Certainly there 1is wusually a considerable
difference in design between turbomachines
handling liquids and those handling gases. There is
another difference between pumps or compressors
on one hand and turbines on the other. Distinctions
or choices of this type have to be made before the
design process can begin and are called design
choices, although they are usually not made by the
design engineer but rather by the customer or by the
circumstances under which the development of the
machine is undertaken.

However, even regarding the design of a machine
for a prescribed purpose (liquid or gas, pump or
turbine), certain choices have to be made before one
can start with any specific design considerations.
For example, figures 1-8 and 1-9 show that
essentially the same range of basic specific speeds
can be covered either by axial-flow machines alone
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(fig. [-9) or by both radial and axial-flow
machines, with the latter used at the higher basic
specific speeds. In fact, figure 1-38 shows that the
entire field can be covered also by radial- and
mixed-flow machines, although the flow becomes
axial at the higher specific speeds. Thus the designer
has the choice of a radial-flow machine, an axial-
flow machine, or a combination of both types.
While influenced by the basic specific speed, this
choice is not uniquely determined by this specific
speed but is also dependent on matters of general
arrangement, preferred direction of the flow
entering or leaving the machine, requirements of
performance over a range of operation, and so on.

A related choice may have to be made between a
single-stage radial-flow machine and a multistage
axial-flow machine. This choice is depicted in figure
1-39 and has been debated a great deal in the field
of rocket propellant pumps. Both types of machine
have about the same volume and weight (or mass)
and for basic specific speeds between 0.1 and 0.2
about the same efficiency. (For basic specific speeds
below 0.09, the multistage axial-flow machine can
have the higher efficiency because the number of
stages can be increased. The radial-flow pump
presently has a wider range of stable operation (at
constant speed). The axial-flow pump has a
mechanically much better casing with respect to
high internal pressures and, by its large number of
vanes and vane systems, can be made to have a
much lower amplitude of pressure fluctuations at its
discharge. In the field of aircraft gas turbines and
compressors, the lower frontal area and the higher
efficiency of the axial-flow compressor for high
pressure ratios were decisive for the choice in favor
of the axial-flow design.

This consideration leads to the more general
design choice regarding the number of stages.
Figure 1-12 (sect. 1.2.1) shows the estimated stage
efficiencies of pumps as a function of the basic
specific speed per stage for radial-flow stages at
speeds below ng=0.3. At basic specific speeds
below 0.1, a design choice has to be made between
the loss in efficiency of a single-stage unit and the
complication and loss in efficiency of two-stage or
multiple-stage arrangements. For multiple-stage
machines, the axial-flow stages permit, of course, a
much simpler and usually more efficient arrange-
ment than radial stages, which has led to the
exclusive adoption of axial-flow stages for
multistage steam and gas turbines. For commercial
pumps and compressors, multistage radial-flow
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Figure 1-39.—Design choice between single-stage radial-flow and multistage axial-flow turbomachines.

machines have been used extensively because of the
wider stable operating range of radial-flow pumps
and compressors at constant speed.

The velocity vector diagrams and, therefore, the
vane shapes cannot be determined before another
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design choice has been made regarding the existence
or absence of positive or negative rotation on one
side of the rotor, usually the low-pressure side. This
design choice is made on the basis of considerations
of cavitation or Mach number, the magnitude and
in particular the retardation of the relative flow,
and the overall aerodynamics or hydrodynamics of
multistage machines, particularly axial-flow
machines. The exact magnitude of the rotation of
the fluid cannot be termed a design choice as it is a
continuous function of other flow conditions in the
machine.

Another design choice is often to be made
between single-suction and double-suction
turbomachines, depicted in figure 1-40, usually
having radial-flow rotors. (For turbines, the choice
is between single and double discharge.) On the
basis of fluid mechanics, one would probably elect
the double-suction arrangement, as its peripheral
velocity at the pump impeller inlet is lower for the
same rate of flow Q and the same speed of rotation.
This is advantageous with respect to cavitation as
well as with respect to compressibility (Mach
number) characteristics. Yet, because of the
complication of the general arrangement and inlet
ducting, double-suction rotors have nearly
disappeared from the compressor field, although
the British first radial-flow aricraft compressors
were of the double-suction type. Double-suction
pumps are widely used in the commercial field, but
have seen only limited application in the liquid-
rocket pump field. Double-discharge hydraulic
turbines were used more than 50 years ago for
horizontal-shaft turbines, but have almost
disappeared since vertical-shaft turbines have
become standard. Double discharge has been used
widely in large axial-flow steam turbines to handle
the very large volumes of flow discharged at high
speeds of rotation (3600 rpm).

Figure 1-40 depicts still another design choice,
the choice between the so-called horizontally split
and vertically split casing constructions. This
conventional terminology is not very accurate.
Vertically split denotes the existence of mechan-
ically separable joints along planes normal to the
axis of rotation, whereas horizontally split denotes
the existence of such a mechanical joint along a
plane parallel to, and usually coinciding with, the
axis of rotation. In this compendium, these terms
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are used with their conventional meanings.

Figure 1-40 illustrates this distinction for a
single-stage centrifugal pump or blower. Figure
1-41 shows a horizontally split casing for a
multistage pump or compessor, and figure 1-42 a
vertically split casing for a multistage high-pressure
pump. Large pumps and hydraulic turbines with
vertical shafts are, by the conventional definition,
vertically split, as their casing joints are normal to
the axis of rotation, although these joints are
actually in a horizontal position.

The vertically split construction has the
advantage of permitting much simpler and more
reliable joints and casing parts which are relatively
simple and more or less axially symmetric. This
construction is, therefore, used for pressures over
1000 pounds per square inch and in applications
where general reliability and freedom from leakage
are of paramount importance. The vertically split
construction is, therefore, used for high-pressure

-boiler feed pumps, aircraft gas turbines and

Single-suction
vertically split design

Double-suction
horizontally split design

Figure 1-40.—Design choices between double-suction and
single-suction machines and between horizontally split and
vertically split casings.

-B  Vertical section A-0

N R SR
I

Section B-B 5 ,
Horizontal (split)

section O-H

Figure 1-41.—Horizontally split casing of multistage pump.
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Figure 1-42.—Vertically split casing of multistage high-
pressure centrifugal pump.

compressors, rocket propellant pumps and
turbines, and pumps handling highly corrosive or
toxic liquids and liquid metals.

Horizontally split machines, particularly
multistage machines, have the great advantage of
being much easier to assemble or dismantle than
vertically split machines. This construction is,
therefore, regularly used for commercial multistage
pumps and compressors at pressures up to at least
1000 pounds per square inch, as well as for large
multistage steam turbines. The horizontal split
demands great care and often ingenuity in design to
prevent leakage.

Thus the design choice between the vertically and
horizontally split constructions is not directly
related to the operating conditions expressed by the
various specific speeds. This choice is made on the
basis of absolute pressure, existing practice and
experience, demands of the application of the
machine, reliability considerations, and, too often,
personal judgment and opinion. This choice is a
good example of the fact that the design of
turbomachines is not determined entirely by
rational analysis.

The last design choice to be discussed in some
detail is that between shrouded and unshrouded
rotor vane systems. In axial-flow rotors, the shroud
is simply a cylindrical ring around the outside of the
vane system. In radial-flow rotors, the vane system
has either one disk-shaped shroud on one side or
two such shrouds, one on each side of the vane
system (see fig. 1-46, sec. 1.4). The former
arrangement is called open or single-shrouded, and
the latter is called closed or double-shrouded. Open
double-suction rotors have one shroud in an axially

central plane, and closed double-suction rotors
have two side shrouds and one central shroud,
which may or may not extend to the outside
diameter of the rotor (see left part of fig. 1-40).

To some extent, the design choice about
shrouding of the rotor vanes can be made on the
basis of the centrifugal stress specific speed, in
particular the centrifugal stress coefficient
Ps Ulz, /20, connected with that specific speed. There
probably is an upper limit of this stress coefficient
beyond which shrouding (or double shrouding) is
not mechanically feasible, but such a limit has not
yet been determined. This limit is doubtlessly higher
for radial-flow than for axial-flow rotors, where the
outer shroud by itself is essentially a thin hoop. This
thin hoop has a very low stress coefficient, so that
such a shroud usually depends for its mechanical
integrity on the holding action of the blades, and
the blades are loaded more than they would be
without a shroud. Therefore, a shrouded axial-flow
rotor always has a lower centrifugal stress
coefficient psUf,/ZcrC than any otherwise similar
unshrouded axial-flow rotor. This statement is true
also for radial-flow rotors with radial vanes.

Shrouds are beneficial with respect to blade
vibrations. On this basis, it may be possible to
determine the necessity of a shroud from the
vibration specific speed (eq. (1-79), sec. 1.2.3).

However, while the choice between shrouded and
unshrouded (or single- and double-shrouded) rotor
vane systems can be made partly on the basis of the
centrifugal stress specific speed (and the vibration
specific speed), this choice is influenced by other
important considerations. A single- or double-
shrouded rotor is certainly more difficult and costly
to manufacture than an open rotor. This means
that, under certain conditions (e.g., cost
limitations) and for certain materials or processes,
the shrouded constructions are ruled out for
manufacturing reasons. In other cases, for
example, where axial-flow rotors with very low
head coefficients (¢, =2g,H/ U(Z,) are used, usually
in machines or stages with very high basic specific
speed, the use of an outer shroud would entail
unacceptable losses in efficiency. Thus this choice is
influenced by the basic specific speed, but not
uniquely determined by it.

There are still many other design choices to be
made, for example, those discussed in section 1.3.2
and illustrated in figure 1-28. However, the design
choices just discussed are probably sufficient to
illustrate this concept.



While the design choices depend to some extent
on the dimensionless operating conditions (the
specific speeds), there is one clear distinction
between these choices and the previously described
relations between the specific speeds and the design
parameters appearing on the right sides of the
specific speed equations (see tables 1-1 and 1-1I,
sec. 1.2.3).

The design parameters and the corresponding
design forms are, at least for each section of the
machine, continuous functions of the specific
speeds. With the exception of a few discontinuities
that may exist in these relations, small changes in
the dimensionless operating conditions (the specific
speeds) in principle produce correspondingly small
changes in the design parameters and the resulting
design forms.

In contrast, design choices are usually made
between two distinct possibilities (or among, at the
most, a small number of possibilities), for example,
between single and multistages, single and double
suction, vertically and horizontally split construc-
tion, and so on. Design choices are not continuous
functions of the conditions that influence these
choices. This distinction between design parameters
and design forms on one side and design choices
and the resulting changes in design form on the
other side may well serve as part of the definition of
design choices.

It might be assumed that under idealized
conditions of knowledge there would exist a definite
relation between the dimensionless operating
conditions (the specific speeds) and the corre-
sponding design forms. It is now evident that even
for completely given conditions this relation would
not be unique, that there would be more than one
set of optimum design forms and more than one
optimum overall design. The multivalued results of
the relation between dimensionless operating
conditions and design forms are selected by the
discrete design choices described in this section.

1.4 Representation of Relations
Between Dimensionless Operating
Conditions and Design Form

1.4.1 Introduction

The survey presented in this chapter begins with
the dimensionless representation of the operating
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conditions in turbomachinery in the well-known
form of the basic specific speed. Also presented in
this form, in addition to the speed of rotation, are
the volume flow rate; the head; and the effects of
cavitation, compressibility, viscosity, stresses in
solid parts, gravity, and vibration. (Of course, there
may be other operating conditions that should be
considered.)

The operating conditions presented in this form
are related to certain design parameters appearing
on the right sides of the various specific speed
equations listed in tables 1-I and 1-II. Besides the
flow coefficient V,,/U and certain ratios of linear
dimensions appearing in all these equations in one
form or another, there is one parameter in each
equation whereby the equation is distinguished
from all the other specific speed equations. These
distinguishing parameters are a head coefficient, a
suction head coefficient (cavitation number), a
Mach number, a Reynolds number, a stress
number, a Froude number, and a vibration number
(principally a Strouhal number).

The ratios of linear dimensions appearing in the
specific speed equations have, of course, a very
direct influence on the form of the profile of the
machine, particularly the rotor. The flow
coefficients together with the head coefficients
determine to a large extent the velocity vector
diagrams, once the rotation of the fluid on one side
of the rotor (usually the low-pressure side) has been
determined by design choice or other consid-
erations. The velocity vector diagrams determine
certain elementary characteristics of the vane or
casing shape as well as the ratio of vane length to
spacing on the basis of the lift coefficient. The
stress coefficient p,U?/20 determines certain
structural characteristics of rotating elements and
vanes, and the vibration number Uz/\/E/ps other
structural characteristics of rotors or vanes. (This
writer has not been able to correlate design form
characteristics in a definite manner with the Froude
number, but such relations may well be established
in the future.)

At this point, it seems appropriate to call
attention to the process of establishing the overall
three-dimensional design form of the entire
machine. Certainly this process is made possible or
aided by the previously acquired ratios of certain
dimensions and elementary design form charac-
teristics. Yet considerable knowledge, experience,

65



§1.4.1-1.4.2

and skill are required to combine these bits of
design information effectively into a geometrically
and mechanically harmonious and logically
consistent whole. (Most of the other chapters of this
compendium are devoted to the foundations and
execution of this process.)

It is hoped that the foregoing description is
sufficient to distinguish the overall design form of
the entire machine (or of a major part, like an
impeller) from the elementary design forms or form
characteristics derived from the design parameters
such as the flow, head, and stress coefficients. A
sharper distinction may not be desirable as the
elementary design forms are likely to be extended
by the development of design methods so as to
cover progressively increasing portions of the
overall design of the machine. (Sections through
entire vane systems such as those shown in figure
1-23 are an example of this growth.)

The relation between the dimensionless operating
conditions, the design parameters, and certain
elementary design forms is not unique in itself and
certainly not sufficient to determine uniquely the
overall design of the machine, not even under the
most idealized assumptions regarding the state of
knowledge and experience. The design form of an
entire machine depends also on a number of design
choices such as those between gases and liquids,
pumps and turbines, axial and radial flow, and so
on. Only after such choices have been made can one
hope to establish a definite relation between the
dimensionless operating conditions and the overall
design form of the machine. In other words, the
multivalued nature of the relation between
dimensionless operating conditions and design
forms requires decisions regarding the pertinent
design choices in order to make this relation as
unique as possible under the existing state of
knowledge and experience.

1.4.2 Space of Dimensionless Operating
Conditions and Relation to Its
Design Parameters

The last step in this presentation of turbo-
machinery design is the construction of a mental
picture or scheme representing what is stated
previously.

The field of all possible dimensionless operating
conditions, presented as a number of specific speeds
(the left sides of the equations in tables 1-I and
1-11), is imagined as a multidimensional space, each
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coordinate being one of the dimensionless con-
tinuously variable operating conditions (one of the
specific speeds). A point in this space represents one
complete set of dimensionless operating conditions.

As mentioned previously, every specific speed
can be related to a number of design parameters as
expressed by the right sides of the equations in
tables 1-1 and 1-II. This relation is multivalued,
every particular solution depending on a number of
design choices. However, after all pertinent design
choices have been made, one can imagine that every
point in the space of dimensionless operating
conditions can be associated with a set of numerical
values of the design parameters appearing on the
right sides of the specific speed equations.
Accordingly one can draw, in the multidimensional
space of operating conditions, the loci of constant
values of the design parameters concerned (lines,
surfaces, etc.).

It is somewhat difficult to demonstrate the
construction of these loci not only because the space
of dimensionless operating conditions is multi-
dimensional, but also because the design
information available for most of the specific
speeds is as yet far too incomplete to permit such a
demonstration in definite terms. However, if we
choose a highly simplified case, involving only a
very limited number of variables, such a
demonstration seems possible.

Only two specific speeds are considered variable.
The best design information available today falls in
the hydrodynamic field, represented by the basic
specific speed and the suction specific speed. These
two specific speeds are, therefore, the variable
operating conditions considered in this demon-
stration, with all other specific speeds having fixed
values in ranges where sufficient design information
is available. One may consider this example as a
plane section through the multidimensional space
of operating conditions which is parallel to the n;-
and S-axes and normal to all other coordinate axes
of this space.

The next step is that of making the necessary
design choices. These choices are the following:

(a) The machine is a pump (not a turbine).

(b) The fluid is a liquid of low kinematic vis-
cosity; this determines a sufficiently low value of
the compressibility specific speed and a sufficiently
high value of the viscosity specific speed so that



changes in compressibility and changes in viscosity
(and size) have only negligible effects.

(c) The peripheral velocities are sufficiently low
and the strength-weight ratio of the structural
material is sufficiently high to practically eliminate
stress considerations; specifically, the centrifugal
stress specific speed is well below 0.1.

(d) The gravity specific speed is sufficiently high
and the vibration specific speed sufficiently low to
practically eliminate gravity and vibration effects
from the design considerations.

(e) The rotor design form is single suction and
varies continuously so that flow changes from
radial (outward) for low basic specific speeds to
axial for high basic specific speeds.

(f) Only single-stage pumps are considered.

This demonstration is concerned only with the
impeller design. Consequently, no design choices
need to be made regarding the casing construction,
such as between vertical and horizontal splitting of
the casing, or concerning the locations and direc-
tions of the casing inlet and discharge openings.

The foregoing design choices are not sufficient to
solve the basic specific speed and the suction
specific speed equations for the design parameters.
However, certain design parameters can be chosen
on theoretical and empirical grounds.

The inlet hub-tip diameter ratio Dy/D; can be
chosen on empirical grounds. A value of
D,/D;=0.25 is large enough to cover most
mechanical requirements of shaft diameter for
single-stage pumps. Yet, if for overhanging
impellers, Dy, /D; =0, the factor (1 —D3/D?)1/2 in
the specific speed equation changes only from 0.968
to 1, that is, by less than 3.5 percent. On the other
hand, if D{, /D; is larger than 0.25, say 0.35, then
(1 - D%/D?)1/2=0.9375, only about 3 percent less
than the value corresponding to the assumed
diameter ratio of 0.25. This value is, therefore, a
good mean value to assume, and departures from it
within the range expected for single-stage pumps
can have only minor effects.

Another parameter that is easy to estimate is the
inlet head-velocity ratio 2g0H5,,/an,i. According
to the cavitation parameter diagram shown in figure
1-18 (sec. 1.2.2), the suction specific speed reaches
a maximum for practical values of blade cavitation
number C, =0, when 2g,H,/ an,,- is close to 3.5.

The same diagram and equation (1-46) indicates
that under the assumptions of this demonstration,
the equation for the suction specific speed is
reduced to
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5571V, (1-139)

With the flow coefficient ¥, ;/U; so determined
by the suction specific speed alone, the basic
specific speed equation can be solved for D;/D, if
one can make a rational assumption about the head
coefficient. It is assumed empirically that the
maximum value of this head coefficient which exists
at the minimum discharge diameter D, ., is
28, H/ U(Z,,min =1. Using this assumption and that
of Dy,/D;=0.25 together with equations (1-139)
and (1-24), one finds

1/2 372
Vi D;
n =0.4594( ”’”) ( ! >
d Ui Do,min

_0.4594 < D )3/2
(5.571 8)1/2 \ Do, min

Figure 1-43 shows a graphical evaluation of
equation (1-140), which is, in fact, the previously
mentioned section through the multidimensional
space of operating conditions. In this section
appear two systems of lines, lines of constant values
of the inlet flow coefficient V,, ;/U; and lines of
constant values of the diameter ratio D;/D, min.
Logarithmic scales are, quite properly, used for the
dimensionless coordinates and give this section the
qualities of a computation chart. Thus this initially
somewhat abstract concept of a section through the
space of dimensionless operating conditions
appears in a concrete and useful form.

(1-140)

The diameter ratio D;/D, m;, and the flow
coefficient V,,;/U; are, of course, not the only
design parameters that are of interest and can be
related to the specific speeds. Of particular
significance is the maximum outside diameter
Dy max- Often this diameter must be larger than
D, min because of the previously mentioned limit of
the retardation of the relative flow. A simple
solution can be found by assuming that the
circumferential component wy of the relative flow
should not be retarded more than indicated by
WU‘O/WU,,'EO.65.

Using Euler’s turbomachinery momentum
equation as well as wy;; = — U; (for zero rotation of
the absolute flow at the impeller inlet) and
2g,H/U% . =1, one obtains

o,min
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Figure 1-43.—Design parameters as functions of basic and suction specific speeds for head coefficient of 1.
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+0.325 (1-141)

which is derived in appendix 1-A. In this equation,
7y is the so-called hydraulic efficiency of the
machine, which accounts only for head losses, not
for leakage or parasite torque increases. Figure
1-44 shows the evaluation of equation (1-141)
under the assumption that n, =0.90, and with only
the equality sign, so that D, ,../D; has its
minimum value. Instead of using this minimum
value, one usually employs a larger value D}, =D;
for all cases where D, . <D;. The corresponding
shifts of the curves representing Dy pax are
indicated in figure 1-44 by dashed arrows.
Evidently it would be possible to enter this
information into the section through the space of
operating conditions (fig. 1-43). This is done for
D;/Dgy e =0.8, 1.0, and 1.2 to indicate this
family of lines diagrammatically. Since, according
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to equation (1-141), the lines D; /D, may = constant
are parallel to the lines D;/D, ,;, =constant, it
would be difficult to distinguish the D;/Dg max
family of lines from the D;/D, ,;, family.
However, only this practical consideration of
visibility prevents one from showing a multiplicity
of parameters such as D;/D,, ;¢ Or 2g,H/ Ug, max
in the section (fig. 1-43). The minimum head
coefficient 2g ,H/ Ucz,, max 1S derived easily from the
assumed value of the maximum head coefficient
28,H/U% .. =1 by the relation

2g,H _ 28,H D? .
2 - UZO o,min (1-142)

2
o, max o,min Do,max

With Dy o /Dy min given in figure 1-44. This
equation, of course, assumes equal energy addition
in all stream surfaces.

Additional design parameters can easily be
calculated. For example, the rotor width ratio
bo/Dy min (see fig. 1-7 or 1-25) is readily derived
from the condition of continuity. Form charac-
teristics of stationary passages adjacent to the rotor
are obtained on the same basis and by the law of
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Figure 1-44.—Maximum pump discharge diameters D ;,q, and D; as functions of D; /D, p;p.

constant angular momentum. Every point in the
section shown in figure 1-43, therefore, represents
in principle the whole set of dimensionless design
parameters, which is as complete as permitted by
the state of knowledge available. Figure 1-27
depicts the type of information represented by every
point in this section, in this demonstration with
respect to the design form of the impeller only.

It is desirable to illustrate the last step, that is, the
establishment of a complete design form from the
design parameters. At present, this step can be
demonstrated (under many simplifying assump-
tions) only for the relatively well-established field of
hydrodynamic rotors and is represented in a space
of only two dimensions, which are the operating
conditions ng and S.

Ideally every point in this space or section should
be associated with a complete design form. This is
demonstrated for a very limited number of points
(A to F) in figure 1-43. Figure 1-45 illustrates
diagrammatically the corresponding design forms
by showing the impeller profiles. The various
profiles are correlated with the six points in figure
1-43 by the same letters, as well as by the values of
the basic specific speed n; and the suction specific

speed S.

Since the impeller design forms include the actual
vane shapes derived from the velocity diagrams
(shown in fig. 1-27), this last step is a very major
step, demanding all the knowledge, experience, and
skill available in the pump design field. It is the core
of the design process. Hopefully the foregoing
discussion shows this process in its proper position
within the overall design procedure.

Since D, max/D; given by figure 1-44 is a
minimum value of this ratio, it is permissible, even
desirable, to show in figure 1-45 the larger ratio
D, /D; whenever D, gy <D;.

1.4.3 Extension of Example to Three
Dimensions With Particular Attention to
Stress Specific Speed

We now return to the original, multidimensional
picture of the space of dimensionless operating
conditions. To aid the imagination, consider at one
time the interaction of the ng, S-section (shown in
fig. 1-43) with only one of the other coordinates
(specific speeds) of this space. This other coordinate
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axis is, of course, normal to the ng, S-plane, so that
a three-dimensional picture of the interaction with a
third specific speed is obtained.

The lines in figure 1-43 represent in this picture
surfaces intersecting the ng, S-plane. Among the
design choices in the previous section are
stipulations that small changes in compressibility,
viscosity, stress, gravity, and vibration charac-
teristics have only negligible effects. This means
that within the range of validity of these
stipulations the surfaces represented by the lines of
constant D;/D, yin and V,, ;/U; in figure 1-43
intersect the ng, S-planes at right angles provided
that the third specific speed considered is concerned
with one of the characteristics just mentioned.
Therefore, as intended, the set of design choices
eliminates the multidimensional character of the
space of dimensionless operating conditions within
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this limited range, which leaves n; and S as the only
independent variables.

As soon as one extends considerations to large
changes in compressibility, viscosity, stress, gravity,
and vibration characteristics, the picture becomes
quite different. The surfaces, represented in the ng,
S-planes by the lines D;/D, ,;;, =constant and
Vm,i/ Ui =constant, curve in planes normal to the
ng, S-planes. For example, at low viscosity specific
speeds (low Reynolds numbers) the lines in the
ng,S-planes have different positions, and the
surfaces they represent intersect the ng, S-planes at
angles substantially different from 90°. This is the
statement in geometric terms that the viscosity of
the fluid as well as the viscosity specific speed, and
changes therein, have substantial effects on the
design parameters of the machine if the viscosity
specific speed is low.

Similar statements can be made for other specific
speeds used as the third coordinate, for example,
the stress specific speed. At high stress specific
speeds, the surfaces of constant design parameters,
such as D;/Dg, pin or V,,;/U;, intersect ng,
S-planes not at right angles and not at the same
places as for the low stress specific speed assumed
previously. To describe this three-dimensional
space of the three operating conditions n,, S, and
n,, one could investigate relations in planes normal
to the ng, S-plane, for example, in several n,, n,-
planes at different constant values of S. A series of
diagrams analogous to figure 1-43, representing
ng.ng-, n,,S-, and ng, S-planes at different constant
values of S, ng, and n,, respectively, would describe
the field of single-suction centrifugal- and axial-
flow pump design forms rather completely and
would be of great practical value, particularly for
preliminary design. Unfortunately, presently
available information on the design of such pumps
is not sufficient for arriving at an even approx-
imately unique answer for such a representation.

In order to avoid the impression that the mental
pictures discussed in this section are merely abstract
speculations, figure 1-46 is presented to give a
somewhat qualitative picture of the final results
that might be obtained from a step in the direction
of the n, .-axis at constant values of n; and S. The
step is taken from a centrifugal stress specific speed
ng . <0.1 (point G in fig. 1-43) to a value between
ng.=0.2 and ny . =0.3. (It would require a fairly
detailed stress analysis to arrive at more definite
figures.) To accomplish this increase in the
centrifugal stress specific speed, it is obviously



Figure 1-46.—Radial-flow rotor design as function of stress
specific speed n, .. Basic specific speed n;, 0.117 (2000).

necessary to increase the stress coefficient
p sUg /20.. This is done by replacing design
elements having relatively low stress coefficients by
elements having relatively high stress coefficients.
In section 1.3.3.1, it is stated that blades inclined so
as to introduce bending stresses (under the influence
of centrifugal forces) have relatively low stress
coefficients. The rotor shown in figure 1-46 with
ng.c =0.1 has such blades (strongly inclined against
the radial direction). Another element having a low
stress coefficient is the outer shroud (sec. 1.3.3.1);
the coefficient is low partly because the shroud is
hoop-shaped and partly because it tends to increase
the stresses in blades that are favorable with respect
to stress (nearly radial blades).

The natural ways to increase pg Ug /20, and n,
are, therefore, to change the blades so as to have
nearly radial blade elements (see, e.g., fig. 1-29)
and to eliminate the outer shroud of the rotor. The
rotor design shown in figure 1-46 for stress specific
speeds between 0.2 and 0.3 shows these changes in
design. Note also the elimination of the central bore
through the back shroud of the rotor.

Will this change in blade design have a harmful

§1.4.3-1.4.4

effect on the hydrodynamic performance? There is
no compelling reason why it should directly harm
the cavitation performance (nor the related
performance with respect to compressibility).
However, the efficiency and the stability of
performance are likely to suffer if the relative flow
in the rotor is excessively retarded. This can easily
happen in pumps (or compressiors), because radial
blade elements in connection with radial discharge
of the meridional flow (as shown in fig. 1-46) lead
to radial discharge relative to the rotating impeller
and thereby to a minimum of the relative discharge
velocity. To minimize this contingency, a stationary
inlet guide vane system may be used (fig. 1-46).
When the flow entering a pump rotor in this way is
given a strong rotation in the direction of the rotor
motion, the relative inlet velocity is reduced and
excessive retardation of the relative flow from inlet
to discharge is thus avoided. It must be noted,
however, that this solution of the retardation
problem may have an adverse effect on the
cavitation performance of the machine.

As mentioned previously with respect to
hydrodynamic design, all the available knowledge,
experience, and skill in mechanical and
hydrodynamic design, and perhaps more, are
needed to make a reasonably useful attack on the
design problems of the ng, S, and n, . space. This
situation can hardly be better in the ng, ng, and n, .
space of gas-dynamic machines, and it is much
worse when the viscosity, gravity, and vibration
specific speeds are involved.

1.4.4 Inclined Sections Through Spaces of Turbo-
machinery Operating Conditions and Design Forms

In the preceding sections, the multidimensional
space of operating conditions is described and used
by means of plane sections through this space.
Specifically a very limited number of dimensionless
operating conditions, usually two, are considered
variable, and all other operating conditions are
considered fixed. This means that these sections are
chosen to be parallel to two axes of this space and
normal to all other axes. This discussion cannot be
closed without calling attention to the fact that this
selection of the sections considered is not the only
selection possible. The section chosen might be
inclined against the coordinate axes, which means
that within such a section more than two of the
dimensionless operating conditions might vary.
However, these variations could not be independent

7t



§1.4.4-1.4.5

of each other because, if they were, the section
would become a space of as many dimensions as
there are independent variables.

Variations in the dimensionless operating
conditions which are dependent on each other may
be of considerable practical significance in some
cases. For example, the stress specific speed and the
compressibility specific speed of gas turbines or
compressors may very well be interrelated for
practical reasons. The effect of a particular
structural material (a particular strength-density
ratio) on the design form, in connection with given
characteristics of the gas, can perhaps be described
effectively by an inclined, conceivably curved,
section through a space with the basic specific
speed, compressibility specific speed, and stress
specific speed as the principal variables. In other
words, it may be of practical interest to limit the
freedom of design variations in a prescribed
fashion. Inclined or curved sections through the
space of dimensionless operating conditions may be
a convenient way of representing such a situation.

1.4.5 Review

The field of turbomachinery design is first
represented by a number of analytical relations
between various dimensionless operating
conditions, the specific speeds, and a number of
dimensionless design parameters, such as ratios of
important linear dimensions, flow and head
coefficients, and so on. Every set of operating
conditions is associated with a corresponding set of
design parameters which can be reasonably unique
only after certain design choices have been made
regarding the nature of the fluid, the purpose and
type of the machine, and so on.

This situation can be represented as a space of
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dimensionless operating conditions, every
coordinate representing one of these operating
conditions (i.e., one specific speed). Every point in
this space represents a complete set of dimen-
sionless operating conditions, as complete as
possible under the present state of knowledge.

After all pertinent design choices have been
made, every point in this space can be associated
with a corresponding set of design parameters, so
that one can locate in this space the loci of constant
values of all design parameters appropriate for the
design choices made. A two-dimensional section
through this space shows these loci as lines of
constant values of a design parameter (fig. 1-43).
Such a section may, thus, be a chart from which one
can read values of the design parameters appearing
therein. Modern means of computation may extend
this possibility beyond the format of a two-
dimensional graph.

The design parameters are either ratios of
important dimensions or coefficients which
determine directly or indirectly certain elementary
design form characteristics. Thus each point in the
space of dimensionless operating conditions
represents a complete set of such ratios of
dimensions and elementary design form char-
acteristics; that is, each point represents all the
design information that can be derived from the
dimensionless operating conditions by the
elementary means employed in this chapter.

The core of the form design process consists in
associating with points in this space (with complete
sets of ratios of dimensions and elementary design
form characteristics) corresponding design forms of
the entire machine (see figs. 1-45 and 1-46). This
process requires all the knowledge, experience, and
skill available in the field of design. This process is
not described in this chapter, only summarized in
relation to other aspects of the design process.



Appendix 1-A—Effect of Limit of Retardation of Relative Flow

Assume a ratio of retardation of the relative flow
wy o/wy i =0.65. With no rotation of the absolute
flow at the inlet,

wy,i=—U;=|U;|

At the discharge,
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Chapter 2

Theoretical Principles of the Hydrodynamic Design

of Turbomachinery

2.1 Introduction

The theory of flow in turbomachinery relates the
flow to the design form of the machine. It is based
on the general laws of fluid mechanics. The most
important of these laws are assumed to be known.

In this chapter, the theory of flow in turbo-
machinery is considered separately from the
similarity considerations treated in chapter 1. The
theory of flow attempts to approximate the actual
flow conditions in some useful fashion. Similarity
considerations merely compare flow conditions
with each other while treating them either as
unknown or as given by some other information.

As mentioned in chapter 1, flow conditions in
turbomachines are exceedingly complex; they are
three-dimensional and unsteady. The theory of flow
attempts to approximate these flow conditions as
closely as possible. This theory is as broad a field as
general fluid mechanics, since there are indeed very
few aspects of fluid mechanics that do not apply to
turbomachinery.

In the design of turbomachinery, however, it is
prudent to pay attention primarily to the simplest
and most fundamental aspects of the flow, because
the design process demands the solution of the so-
called indirect problem, that is, the problem of
finding the form of the flow boundaries required to
generate a prescribed flow, or at least certain
characteristics of that flow. This indirect problem is
usually much more difficult to solve than the so-
called direct problem, that is, the problem of
finding the form of the flow for a given form of the
flow boundaries. Generally the indirect problem

PRECEDING PAGE BLANK NOT FILMED

(design problem) can be solved only for relatively
simple approximations of the flow to be generated.
The theory of flow as applied to the design of
turbomachinery is, therefore, concerned primarily
with approximations that are sufficiently simple to
solve the indirect flow problem. Since the flow
boundaries to be determined are usually expected to
be strongly three-dimensional, the requirement for
simplicity of the theoretical approximations to be
used is even greater in the field of turbomachinery
than in most other fields of hydrodynamic or
aerodynamic design.

The presentation of the theory of flow in tur-
bomachinery given in this chapter will impress
many experts in this field as unduly elementary,
since it contains only those aspects of the theory
which are applied in the following chapters to the
design of turbomachinery. This elementary
character is pronounced particularly because the
approach to the design problem that is used later
proceeds in nearly all cases from the simplest
approximation to more refined solutions. The
theoretical background of the design process given
in this chapter follows this scheme and pays
primary attention to the broad theoretical principles
on which the design of turbomachinery can be
based.

The theoretical principles may well be called
hydrodynamic, because the effects of com-
pressibility of the fluid are treated separately as
departures from the principles of incompressible
flow. Only where compressibility does not affect
the theoretical principles is it included from the
beginning as, for example, in the derivation of
Euler’s turbomachinery momentum equation.
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2.2 Meridional Flow in a
Space of Revolution

The flow in a turbomachine proceeds in a space
of revolution, a space bounded by two coaxial
surfaces of revolution. There are exceptions to this
rule, for example, the flow in a volute (or spiral)
casing.

For the purely axial-flow machine, the flow
proceeds between two coaxial, cylindrical surfaces.
For a purely radial-flow machine, it proceeds
between two planes normal to the axis of rotation.
For the so-called mixed-flow or conical-flow
machines, the flow may proceed between two
coaxial, conical surfaces; however, in the most
general case the flow proceeds between two coaxial,
doubly curved surfaces of revolution and therefore
changes its direction from generally axial to more or
less radial. This description pertains primarily to
the flow without its circumferential component,
that is, to the flow component in radial planes
containing the axis of revolution, which is called the
meridional component. The flow in a space of
revolution is thus divided into its circumferential
and meridional components.

Usually the description of this flow is simplified
by assuming that the meridional and circum-
ferential components are both uniform along any
circle coaxial with the flow boundaries. By this
assumption, called the assumption of axial
symmetry, it is also assumed that the flow proceeds
generally along coaxial surfaces of revolution, and
these surfaces are the stream surfaces of the
meridional flow. This hypothesis of coaxial stream
surfaces of revolution is usually maintained even if
the circumferential velocity component and the
meridional velocity component are not completely
uniform along coaxial circles. It is by this
hypothesis that one can divide the flow in a space of
revolution into two separate parts, circumferential
and meridional flow, which can be determined and
treated independently of each other. In section 2.7
this independence is shown to break down as soon
as the flow has vorticity. However, even in this case
it is customary to adhere to the hypothesis of
coaxial stream surfaces of revolution for the
meridional flow, although this hypothesis is not
strictly justified under these conditions.

The rest of this section describes the relation
between the meridional flow and the boundaries of
the space of revolution.
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The simplest approximation of the meridional
flow in a space of revolution is obviously the one-
dimensional approximation, obtained by dividing
the rate of volume flow by the cross sections of the
space of revolution A4,,, which are normal to the
meridional flow (see fig. 2-1). Each cross section is
the area of a surface of revolution, coaxial with and
normal to the boundaries of the space of revolution
considered. With the notations used in figure 2-1,
one finds

B
A,=b2rry=2m SA rdb @-1)

R S

Figure 2-1. — Flow cross sections in space of revolution.

The condition of continuity defining the meridional
velocity V), in its one-dimensional meaning is

Vin = 4 (2-2)

Under the one-dimensional assumption that
V,,=constant over any cross section A4,,, one can
determine the normal spacing d between successive
meridional streamlines or stream surfaces, accord-
ing to figure 2-2, by

27rd =constant
or (2-3)
rd =constant

since these products are constant along any cross
section of the meridional flow, but not in the direc-



Figure 2-2. — Geometric construction of meridional
streamdlines.

tion of this flow. This means that the volume flow
AQ is the same between successive stream surfaces.

The assumption that V,, is constant over the
cross sections of this flow is in many cases a better
approximation than might be expected on
theoretical grounds. Nevertheless, departures from
this assumption must be considered on a rational
basis.

For a so-called potential velocity distribution of
the meridional flow, that is, a distribution of
uniform total energy (of an incompressible fluid),
the equation for the V,, distribution across the
stream is

Ve Ve
b TR O @4

where R is the radius of curvature of the meridional
streamline, and b is the coordinate normal to ¥V, in
radial planes (see fig. 2-3(a)). The coordinate b is
assumed to increase in the direction away from the
centers of curvature of the meridional streamlines.
Figure 2-3(b) shows the curve of V,, against b
constructed from the direction of its tangents
av,,/db= —V,,/R. The magnitude of V,, at the
point where this construction (i.e., the integration
of eq. (2-4)) is started may first be chosen arbitrarily
and then be determined by the condition of
continuity:

B
Q=2 | 1V b (2-5)

The volume flow rate Q is, of course, constant for
incompressible fluids. Its variations (along the
meridional flow) for compressible fluids are

§2.2
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(a) Meridional flow configuration.
(b) Velocity and flow distribution in section B-A.
Figure 2-3.—Meridional velocity distribution for 9V, /b
+V,/R=0.

determined by a process of iteration, as described in
section 2.4. Equation (2-5) is easily evaluated by the
area under a rV,, curve (see fig. 2-3(b)). The
intersections of the meridional streamlines (or
surfaces) with the cross section AB are determined
by dividing the area under the rV,, curve into a
number of equal parts, as shown in figure 2-3(b).
Departures from equation (2-4) (i.e., departures
from a meridional flow of uniform total energy in
the sense of Bernoulli’s equation) are expressed by
the so-called vorticity {{; of the meridional flow.
The meaning and determination of {; are given in
section 2.6.3.1, appendix 2-A, and section 2.7. The
equation controlling the meridional velocity
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distribution across a stream with the vorticity ¢ is
av,, V,

m __
b TR W
or (2-6)
aV,,,_S“ _Vn
b VTR

The vorticity {y is positive if it has the same
direction of rotation as V,,/R.

The construction of the V,, against b curve for
flow with vorticity {y is shown in figure 2-4.
However, in this case it is important to start the
integration of equation (2-6) at approximately the
correct value of V,,, because the condition of
continuity cannot be satisfied by simply scaling the
resulting ¥, curve up or down by any desired ratio.
The construction of the V,, curve should this time
start at some midpoint M, presumably the area
center of the cross section considered, where V,, 5
can be assumed to have the average value of the
cross section as determined by the condition of
continuity (eq. (2-2)). If a subsequent determination
of the rate of flow by equation (2-5) shows a (small)
discrepancy, this can be corrected by shifting and

scaling the ¥, curve up or down and using a curve
between that obtained by a parallel shift and by
scaling. One can, of course, also change the initial
Vm, s value according to the discrepancy and repeat
the construction of the V,, curve.

2.3 Circumferential Flow in a
Space of Revolution

The circumferential component of the flow in a
space of revolution is determined by the condition
that any torque or moment about the axis of
rotation applied to the fluid is equal to the change
in moment of momentum of the mass flow per unit
of time passing through the space. This law is
expressed by Euler’s turbomachinery momentum
equation, which is derived in this section.

The moment of momentum passing through an
element dA,, | of the cross section A1 of aspace
of revolution (fig. 2-5) is

dM=p\V,, | dA,, 1 Vyar (2-7

Figure 2-4. — Velocity distribution with vorticity {y. in curved duct (L is arbirrary length associated with points A, M, and B).
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The corresponding moment of momentum
passing through the element dA,,> of a second
cross section A4,, 2 is

dMy=p2Vm,2 dAm2Vu2r2 (2-8)

If the flow is assumed to enter through the cross
section A,, | and leave through the cross section
A 2, the moment applied to the fluid by vane and
friction forces between sections 4, | and A, ; is

Am,2
S P2V 2Vu2ry dAm2

Am,1
S e1Vm1Vuar dAm, (2-9)
This is Euler’s turbomachinery momentum
equation in its most general form. It is rigorously
correct if the moment M comprises all moments
applied to the fluid within this part of the space of
revolution, including circumferential friction forces
on the boundaries of the space. In this form,
Euler’s turbomachinery equation does not depend
on any assumption about the form of the flow; that
is, it is independent of such assumptions as that of
axial symmetry. However, for the same reason,
Euler’s turbomachinery equation is difficult to
evaluate in this general form (eq. (2-9)).

To ease evaluation in several respects, one uses
first the assumption that the flow proceeds through
the system along stream surfaces of revolution
coaxial to the boundaries of the space of revolution
considered. Under this assumption, one can
examine the flow along a coaxial stream surface
S-S. For an infinitesimal region around this stream
surface, Euler’s turbomachinery equation (2-9) can
be written in the form

2
dM=p,r} dszo Vima V.2 do

2r
—p1r} db; 50 Vot Vi1 d8 (2-10)

where @ is the angle about the axis of rotation (in
radians).

Defining circumferentially averaged values of V,,
and Vy by

2
20V, Vi = SOW v, Vy db @-11)

one may write the last form of Euler’s turbo-
machinery equation (eq. (2-10)) in the form

§2.3

dM = p227rr% dbz Vm,ZVU,Z

—0127”‘% dbl Vm,IVU,l (2-12)
However,
p221rr2 db2 V,,,,2=p127rr1 dble,] =dm (2-13)

which is the rate of mass flow entering and leaving
the infinitesimal space of revolution around the
stream surface S-S. This rate of mass flow is, of
course, equal at inlet and discharge by definition of
the stream surfaces of revolution adjacent to the
stream surface S-S and also by definition of db, and
db,. With the approximation

VVu=VmVu (2-14)
which can be exact if the average value E is
defined in accordance with equation (2-12), Euler’s
turbomachinery equation can be written in the form

dM=dm(ryVy2-r1Vy,1) (2-15)

If no torque is applied between stations 1 and 2
(i.e., if dM=0),

rVu2=nVu, (2-16)

where the averaging applies in connection with
equations (2-13) and (2-14) to the circumference of
circles with radii 5 and r|, respectively.

Equation (2-16) expresses the well-known law of
constant angular momentum, which controls all
curved fluid motions of uniform total energy of the
circumferential flow component. Euler’s turbo-
machinery equation supplements this law for the
case where torque or circumferential forces are
applied to the flow.

If the moment dM in equation (2-15) is applied by
a vane system rotating at the angular velocity w, the
work transmitted to the fluid per unit of time is
obviously w dM. The mass involved per unit of time
is p dQ, where dQ is the volume rate of flow passing
along the narrow space of revolution of the widths
db, and db; and following the meridional stream
surface S-S (fig. 2-5). With these substitutions,
equation (2-15) appears in the form

w dM=wp dQ(r2Vy,—rVu,1) (2-17)
If one divides the work per unit of time wM by

the mass flow per unit of time pQ, one finds
wM/pQ has the dimensions of a velocity squared.

79



§2.3-2.4

Instead of dividing by the mass flow pQ, one
customarily divides the work per unit of time wM by
the weight flow per unit of time g,0Q. The resulting
ratio wM/g,oQ has the dimensions foot-pounds per
pound (ft-lb/1b); wM/g,pQ is a length (ft) which is
called the rotor head of the machine. It is the height
to which the work per unit of time wM can raise the
mass flow per unit of time pQ against the (standard)
gravitational field at sea level on Earth.

When this reasoning is applied to compressible
fluids, it is often advisable to maintain the complete
set of units, foot-pounds per pound. With this
approach, equation (2-17) appears in the form

wdM UZVUZ_U]VUI
_Hr: f s

= 2-18
gop dQ &o ( )

where the peripheral velocity U has been substituted
for wr.

For a gas the rotor head H, is the change in total
(stagnation) enthalpy. For incompressible fluids H,
is related to the total head H measured between
inlet and discharge of the machine by H =y, H, for
pumps and H = (1/79,)H, for turbines, 7, being the
hydraulic efficiency introduced in section 1.1 and
equation (1-10a).

It is the last form of Euler’s turbomachinery
equation {eq. (2-18)) which permits the solution of
the entire flow problem across the field of flow
considered here and shown diagrammatically in
figure 2-5. If it is desired, as usual, to exchange the
same amount of energy per pound of fluid between
the rotor and the fluid in every part of the flow,
Uy Vy,2— UV, =constant and

_UVy,-Uy,

H
r 8o

= constant (2-19)

across the entire stream passing through the space
of revolution and the rotor vane system contained
in it. If equation (2-19) is not satisfied in the sense
that the energy exchange per pound H is not
constant across the entire stream, the flow contains
vorticity on at least one side of the rotor vane
system, since r V= constant is the condition for the
vortex-free or irrotational circumferential flow in a
space of revolution. The laws of fluid motion
applying to departures from this case are discussed
in section 2.7. In most practical cases, equation
(2-19) is satisfied across the stream passing through
a turbomachinery rotor.
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2.4 Effects of Compressibility on
Flow in Turbomachinery

The flow of compressible fluids in turbo-
machinery and other fields of fluids engineering
constitutes a very broad area of fluid mechanics,
combining thermodynamics with fluid mechanics.
This broad field is not covered in this section.
Instead, an attempt is made to describe as simply as
possible those aspects in which the mechanics of
compressible fluids differ from the mechanics of
incompressible fluids when applied to turbo-
machinery. Only major effects of compressibility
are considered, and only to the extent that these
effects influence the design of turbomachines in a
fundamental fashion.

The basic effect of compressibility is obviously
the change in the density p or in the specific volume
v (volume per unit of weight) of the fluid in the
machine. Thus, if the specific volume v= 1/gp0 of
the fluid can be determined as a function of the
fluid velocity and the pressure or head in the
machine, the problem of compressibility effects is
solved in principle, although this solution might
require a process of successive approximations or
iteration.

The solution suggested here is based essentially
on two principles:

(1) Bernoulli’s equation for compressible fluids,
which, when differences in elevation are neglected,
may be written in the form

o= (2-20)
2, ' 2, 2

where h designates the enthalpy of the fluid
expressed in mechanical units such as foot-pounds
per pound. Bernoulli’s equation in the generalized
form (2-20) has the advantage of being independent
of the fluid-mechanical losses in the flow, since
such losses are converted into heat and therefore
contribute to the enthalpy of the fluid. The
enthalpy k is known to be (in mechanical units)
equal to h=u+ pv, where u is the internal energy
(capability of doing work by expansion) and
v=1/gyp, so that puv is the familiar pressure term in
Bernoulli’s equation for incompressible fluids. The
internal energy u is obviously the term by which a
compressible fluid differs from an incompressible
fluid.

(2) The enthalpy # and the internal energy u are
related to the pressure and the specific volume (or
density), so that Bernoulli’s equation (2-20)
establishes a definite relation between changes in
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Figure 2-5. — Momentum change in turbomachine rotor.

the velocity V of the fluid and the corresponding
changes in the properties of the fluid, in particular
its volume v per unit weight.

If the zero points of the enthalpy and internal
energy are placed fictitiously at zero absolute
temperature (T=0), without considering any
change in phase, the velocity obtained by (fictitious)
expansion to zero pressure and temperature is

V,=<2gh, (2-21)

which is a constant for any fixed value of the
stagnation (zero velocity) enthalpy h,. The
properties of a compressible fluid may therefore be
plotted in dimensionless form as a function of the
dimensionless velocity V/V,, as was done over 40
years ago by Busemann (refs. 4 and 5). Figure 2-6
shows various properties of air at temperatures
below 700° R, where y=C,/C, and C, are
constant, so that by the definition of the zero point
just given h=C,T. Figure 2-7 presents an enlarged
view of the specific volume ratio v/v, as a function
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of V/V, and also the familiar Mach number M. For
any ideal gas, the velocity and property relations are

V_,\/l_ h _\/1_1

VO— ho— TO
-1

1_(E))V(‘)’ )

v, \T
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(2-22)

(2-23)

Y y=1)
P _ (I ) (2-24)
Po T,
and the acoustic velocity relation is
RV PV _
V.= 3 7, (2-25)

The subscript 0 refers to the V=0 or stagnation
conditions, except in V,, where it refers to equation
(2-21). The product (v/ V}V,/v,) is easily shown to
be the cross-sectional ratio of the flow.

The critical velocity, defined as V., =a, is

/'y—l
Vc‘r=Vo m

which is 0.4082 V,, for air, with y=1.4.

The relations used in deriving equations (2-22) to
(2-26) are, of course, Bernoulli’s equation (2-20)
and the equation of state of an ideal gas

(2-26)

pv=RT (2-27)

The gas constant R is equal to the difference
between the specific heat at constant pressure Cp
and the specific heat at constant volume C,; that is,
R=C,-C,



Also used are the relations for isentropic changes:

pvY = constant (2-28)
v~ DT =constant (2-29)
TY -1

————— =constant (2-30)

The plots shown in figures 2-6 and 2-7 can be
drawn not only for ideal gases but also for other
gases, for example, for air at high temperatures
(where v and Cp are not constant); of course,
different operating conditions such as different
initial temperatures or other initial properties will
lead to different curves. In any event, at least an
approximate relation between a dimensionless flow
velocity and the specific volume ratio v/v,, is usually
obtainable.

The stagnation enthalpy (h,, for V'=0) is given by
the inlet conditions to the machine and by the
changes in stagnation enthalpy, which are equal to
the rotor head H, introduced in section 2.3 in
connection with Euler’s turbomachinery equation
(2-18). If the properties of the gas are given as
functions of its enthalpy (as, for example, by
Keenan’s well-known tables for air and steam) the
stagnation conditions are known throughout the
machine; from these, the properties of the flowing
gas are also known as a function of dimensionless
velocity in the form V/V, or of Mach number. This
means that, for a given mass or weight flow rate,
the volume flow rate Q can be determined for any
place in the machine with the same accuracy to
which the fluid velocity is known or defined. For a
given geometry of the machine this determination
requires a process of iteration, since, for a given
cross-section, the velocity ¥ and volume flow rate Q0
are related by the condition of continuity in
addition to the previously mentioned thermo-
dynamic relation. Thus one must first estimate the
specific volume v and the volume flow Q, then
calculate the velocity V from the condition of
continuity, then determine thermodynamically
the previously estimated variables v and Q, and
continue until consistent results are obtained. This
process converges except near the critical flow
conditions (V=a).

Less iteration is required for the solution of the
indirect problem, that is, the design problem. In
this case the velocity is usually prescribed by the
head, the head coefficient, and the flow coefficient.
The specific volume is then given by the foregoing
considerations (for air at moderate temperatures by
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figs. 2-6 and 2-7). The specific volume v determines
the volume flow rate for a given mass or weight
flow rate. In this respect, the design can still be
dimensionless, since, for the same velocity ratio
V/V, or the same Mach number, the rate of volume
flow at any one cross section of the machine (say,
inlet or discharge) still changes with the square of
the linear dimensions. However, changes in the
dimensionless velocities V/V, (or in the Mach
number) lead to changes in the required design form
because of the resulting changes in the specific
volume ratios. It should be evident that a change in
velocities also changes the rotor head H, and
thereby the variations in enthalpy, specific volume,
and volume flow rate from inlet to discharge of the
machine. This result obviously requires a change in
design form, which is merely a restatement of the
well-known general fact that changes in the
dimensionless velocities of a compressible fluid
(changes in Mach numbers) lead to changes in the
form of the flow and, therefore, to changes in
aerodynamic design or changes in (dimensionless)
performance characteristics, or both.

The effects of compressibility described
previously cover primarily the one-dimensional
aspects of this flow problem. This is sufficient for
most practical considerations, particularly for the
overall design form of the machine. However, the
same approach also gives some qualitative
information about the effects of compressibility on
details of design, for example, vane systems.

Consider, for example, two-dimensional, plane
flow pictures. With incompressible fluids the
spacing between adjacent streamlines is inversely
proportional to the local velocity simply for reasons
of continuity of flow. This means, of course, that
high-velocity regions, such as the region near a
convex flow boundary, are characterized by
relatively close spacing of the streamlines. Inversely
the low-velocity region near a concave boundary
has wider than average spacing between streamlines
(see, e.g., fig. 2-8). It is easy to see that this must
lead to a fairly rapid change in streamline curvature
when moving away from the curved flow boundary
into the interior of the flow field.

Compressibility reduces the effect of velocity
differences in streamline spacing. While an increase
in velocity primarily reduces this spacing, the
accompanying increases in specific volume and in
local volume flow rate tend to increase the
streamline spacing. At the critical flow condition
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(V' =a), these two tendencies just cancel each other
and lead to approximately parallel streamlines with
a corresponding extension of streamline curvature
far into the flow field. This simple reasoning does
not apply beyond critical flow into the supersonic
regime, because the flow velocity is higher than the
cross-stream propagation of flow deflections, so
that the deflecting effects of curved flow
boundaries are moved downstream.

The result of this consideration is that the
deflecting effect of boundaries of given curvature is
increased by the effect of compressibility with
increasing velocity up to the critical or sonic flow
velocity. Inversely, if a given flow deflection is
desired, the curvatures of the boundaries should be
decreased as the sonic velocity is approached from
below; that is, for increasing subsonic velocities,
deflecting vanes should become thinner and less
curved than for incompressible flow.

For single airfoils in a widely extended stream,
this reasoning is applied in an approximate,
quantitative manner by the Prandtl-Glauert theory.
This theory has not yet been applied to vane systems
of turbomachines and is therefore not presented
here. A principally one-dimensional solution of this
problem for an axial-flow vane system is outlined in
section 3.27 of chapter 3.

The supersonic flow through vane systems of
turbomachines has been extensively explored both
theoretically and experimentally. However, no
theory of this flow except its one-dimensional
approximation can be described as a simple
extension or modification of the hydrodynamic
theory of the flow of incompressible fluids, which is
the principle of the present treatment of the flow of
compressible fluids in turbomachines. Therefore
only an approximate one-dimensional design
method for subsonic and low supersonic flow in
axial-flow vane systems is outlined in section 3.27.
An example of high supersonic flow through an
axial-flow vane system is given in section 2.5.6 by
using the two-dimensional Prandtl-Meyer method
of characteristics.

2.5 Theoretical Background of
Hydrodynamic Design of
Axial-Flow Turbomachinery

2.5.1 Introduction

The flow in axial-flow turbomachines has been
treated extensively, primarily because of the
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importance of axial-flow compressors in the field of
aircraft propulsion. A complete presentation of the
theoretical and experimental principles of axial-
flow compressors is given in reference 6 and in
numerous NACA reports referenced herein. The
reader is referred to this important group of
references for a comprehensive study of this field.
In accordance with the scheme stated in section 2.1,
the presentation in this section pertains only to
those theoretical principles and experimental data
which have direct applications to the design of
axial-flow vane systems.

Axial-flow vane systems are defined here as vane
systems in which the flow can be assumed to
proceed along cylindrical stream surfaces coaxial
with the rotation and with the space of revolution
confining the flow. Therefore the development of
such a stream surface of a rotor has relative to the
adjacent parts of the machine only a straight and
uniform motion at the constant velocity U, that is, a
nonaccelerated (translatory) motion in its own
plane. Hence the flow relative to such a system is
the same as the corresponding flow relative to a
stationary system. For this reason, axial-flow vane
systems are easier to treat theoretically than vane
systems with a radial component of the meridional
flow.

The simplest approach to the design, the one-
dimensional approach, is also the oldest approach
(for axial- as well as radial- or mixed-flow ma-
chines). It assumes that the entire flow along the
meridional stream surfaces enters and leaves the
vane system parallel to the respective vane ends. It
is intuitively evident that this approach cannot be
correct, because the mean flow between vanes is
certainly less deflected than the flow in the
immediate vicinity of the vanes. Figure 2-8 shows
the development of a cylindrical section through an
axial-flow vane system with the departures of the
flow from the direction of the vanes. These
departures are shown at approximately the correct
magnitude and are considerable. The angular
departures AB3; and AB, are each approximately
one-half of the angular deflection  of the mean
flow generated by the vane system, and the actual
change of the circumferential flow component AV,
is less than three-fourths of the change AV, , which
would result from the assumption that the entire
flow leaves the system parallel to the discharge
direction of the vanes. These departures of the
mean flow from the direction of the vanes must be
expected to increase with increasing vane spacing ¢,
more exactly with decreasing solidity of the vane
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Figure 2-8. — Development of cylindrical section through axial-flow vane and streamline system.

system //¢. Since axial-flow vane systems sometimes
have even lower solidities than that shown in figure
2-8, it can be concluded that a one-dimensional
approach alone is not sufficient for vane systems of
this type; the departures of the mean flow from the
vane direction (particularly AB,;) must be
determined on some rational basis.

Departures from the one-dimensional theory
obviously cannot be determined on the basis of
strictly one-dimensional considerations, but require
at least a two-dimensional approach. It is natural
that the approach used in the aeronautical field for
a single vane or airfoil in an infinitely extended
stream was used first to solve this problem. Later it
was found that this approach alone was not
sufficient to treat the axial-flow turbomachinery
problem except in cases of extremely low solidities,
as in aircraft propellers. However, the principal
concept used in solving the problem of a single
airfoil in an infinitely extended stream, the concept
of circulation, is applicable to all types of
turbomachines and is indeed one of the most useful
concepts of this field.

2.5.2 Airfoil Theory of Axial-Flow
Turbomachinery

The term airfoil theory denotes the theory of
turbomachinery which is based on the same

concepts as the theory of a single airfoil in an
infinitely extended flow field. The term s
applicable irrespective of whether or not the flow
sections through the vanes have airfoil shape. In
fact, the best vane section forms developed during
the last decades differ very markedly from
conventional airfoil shapes. Yet the theoretical
approach described in this section applies. This
approach has little or nothing to do with the shape
of the vane flow sections.

As mentioned in the last section, the principal
concept of this theory is that circulation is a means
of describing the deflection of a fluid stream by a
vane or airfoil.

The usual definition of the circulation I' is the
contour integral of the velocity component Vin the
direction of a closed contour s about the deflecting
body:

T={V,ds (2-31)

The laws of fluid mechanics state that the
circulation so defined is independent of the size and
shape of the contour as long as the flow between the
various contours compared is irrotational in the
sense of equation (2-4) if applied to all velocity
components.

The circulation thus describes a circulating fluid
motion around the deflecting body, vane, or airfoil
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with the understanding that this circulatory flow is
only part of the total flow. Thus the existence of
circulation does not mean that fluid particles
actually travel on closed paths around the deflecting
body.

The circulation is related to the force action
between the deflecting body and the mean flow past
the body by the law of Kutta and Joukowski:
Fi=pVol (2-32)
where F) is the force per unit span or unit distance
normal to the plane of F; and V. The latter is the
velocity of flow past the deflecting body at a
sufficient distance to make the circulatory velocity
Vs negligible compared with V. The force F) is
normal to the velocity vector Vo, .

The law of Kutta and Joukowski can be derived
with respect to the development of cylindrical
sections through axial-flow vane systems. As can be
seen from figure 2-9, the change in circumferential
momentum per unit width (normal to the plane of
flow) produces a circumferential force on the vane:

Fy=pwat(wy,1—wy 2) (2-33)
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The axial component of the force acting on the
unit width of the vane is for the case of no change in
axial momentum

o
Fo=tp2=py)=t5(wi-w) (2-34)

With w, =V, =constant, one finds

2 .2 2 2
WE=wWa=wy g — Wi =Wy +wyd(wy = wyo)
(2-35)
Hence,
o
Fa=t§(WU,1 +wy 2wy 1 —wy2) (2-36)

and when equation (2-36) is divided by equation
(2-33),

Fy _ (wy i+ wy)/2

Fu g (2-37)

= tan O

From figure 2-10, it is evident that (wy | + wy,2)/2
and w, are the components of the vectorial mean

T”" "2 7

’ i
|
|

lpz force
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Figure 2-9. — Velocity and force vector diagrams in straight system of parallel vanes.
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Figure 2-10. — Superposition of velocity vector diagrams for
straight system of parallel vanes.

relative velocity of w; and wy, which is designated
Wo, for reasons that become evident later. The angle
of wo, with the axial direction is designated 8o = 8F,
and equation (2-37) shows that the resultant vane
force F, with components F, and Fy, is normal to
Weo.

To determine the circulation I, one draws a
contour of convenient form around one vane of the
system. The parallelogram ABCD in figure 2-9 is
such a contour if the sides AD and BC have the
same location relative to the vanes and the sides AB
and DC are far enough in front of and behind the
vanes to consider the velocities along AB and DC as
uniform.

The circulation about this contour is

- (§)ABCD ws ds = Ej Ws s+ 52 Ws s
e[ st 7w as 2-38)

For periodically repeating, equal flow fields be-
tween the vanes,

SZ w, ds= - Sz w, ds (2-39)

Furthermore, for sufficient distance of AB and CD
from the vanes,

§2.5.2

B
§A wg ds= wy, it
(2-40)

w S=—W 14
c s U,2

By substituting equations (2-39) and (2-40) into
equation (2-38), one obtains

I'=(wy, - wy! (2-41)

Substituting this expression into equation (2-36)
leads to the relation

Fy=p U2 2U2T (2-42)
or into equation (2-33) leads to
Fy=pwal (2-43)

From figure 2-9, one can immediately read the
geometric relations

Gyt wy /2 sin B = sin Bp= %’
1

Weo
and
Wa FU
— = CO0S = COS = =
Weo 600 BF Fl

By these relations, either equation (2-42) or (2-43)
can be converted into the equation
Fi=pwel (2-44)
where the subscript 1 reminds one of the fact that
all forces considered here apply to a unit width
normal to the plane of flow.

Equation (2-44) has the very same form as the law
by Kutta and Joukowski (see eq. (2-32)); this proves
that the law applies to straight systems of parallel
vanes provided the velocity appearing in the law is
the vectorial mean of the velocity w) far in front of
the system and the velocity wp far behind the
system. Since, for an infinitely long, straight system
of vanes, w; is generally not equal to wy, there is not
one velocity at infinity as for a single airfoil in an
infinitely extended flow field. Therefore the
velocity in the law by Kutta and Joukowski must be
defined for an infinitely long, straight vane system,
that is, the development of a cylindrical section
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through an axial-flow system. The foregoing
derivation provides this definition.

The velocity wy in the law by Kutta and
Joukowski is defined here only for the case where
the axial velocity component V,=w, is constant
everywhere in front of, within, and behind the vane
system. This assumption is generally not satisfied,
but this writer does not know of any simple
derivation of the law by Kutta and Joukowski for
vane systems which does not use this assumption.

In this compendium the definition of w, as the
vectorial mean of w; and w; far in front of and far
behind the vane system is used even in cases where
the axial velocity component is known to change in
the axial direction. This universal use of the
foregoing definition of wy is not likely to lead to
serious errors as long as the components F, and Fy,
of the blade force F| are determined by
considerations that are independent of this defini-
tion, for example, if Fy; is determined by Euler’s
turbomachinery momentum equation. In cases
where F, is of major importance (as in connection
with propellers), considerations of the axial
momentum far in front of and far behind the
system lead to equally dependable results.

The foregoing considerations relate the forces on
a straight system of parallel vanes (development of
a cylindrical section through an axial-flow vane
system) to the change of the flow through this
system of vanes. This relation is quite similar to the
principles of Euler’s turbomachinery momentum
equation (see sec. 2.3), but extends these con-
siderations to include the concept of circulation,
which is essential for the treatment of flow through
vane systems where one-dimensional approxi-
mations are not sufficient.

Two steps are required to relate the foregoing
considerations adequately to the design of turbo-
machinery:

(1) Properly relate the concept of circulation to
the overall flow in the machine as controlled by the
condition of continuity (see sec. 2.2), and more
particularly by Euler’s turbomachinery momentum
equation (see sec. 2.3).

(2) Relate the vane circulation, that is, the
deflection of the flow shown in figures 2-8 and 2-9,
to the form of the vane sections appearing in the
cylindrical sections through the system shown in
these illustrations,

These steps are discussed next.
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Consider a cylindrical section AB through an
axial-flow rotor (fig. 2-11). The circulation around
every vane profile appearing in this section is
designated I';. It is easy to show (see appendix 2-A)
that the circulation about a contour containing
several vanes with several circulations T, is equal to
the sum of all circulations contained within the
outer contour. The total circulation of the
developed section AB is, therefore,

I'=NT, (2-45)

where N is the number of vanes.

The contour along which the total circulation I'is
measured consists of two coaxial circles A and B
before and after the system and an arbitrary cut ab
running more or less axially between two vanes. The
axial distance d of the circles A and B from the
system is large enough so that variations in the fluid
velocities along these circles may be disregarded.
The circulation about the developed section AB
containing N vane profiles is

a b
I’=21rrVu,2+jb Vsds—zerU,,+j Vods (2-46)
a

where the direction of integration, as given in figure
2-11, determines the signs of the terms 2xrVy 2 and
2xrVy, 1. However,

j; V, ds= —S: v, ds

because these integrations are taken along two
identical lines (namely, the cut) in opposite
directions. Hence these integrals cancel out of
equation (2-46), and we obtain
P=2nrVy,—27rVy (2-47)
However, rVy,~rVy ) is the change in angular
momentum of the flow through the system, on
which the theory of hydrodynamic rotors is based
(see sec. 2.3). This change in angular momentum,
according to equations (2-46) and (2-47), is related
to the vane circulation I', by the equation
NT,

rVU,Z - ’VU,l = —E (2-48)

This relation was first established in this form by
D. Thoma (ref. 7). He also pointed out that
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Figure 2-11. — Circulations of axial-flow rotor.

27r VU,I = Fl
and (2-49)
27r VU,Z = Fz

where I'y and T, are the circulations before and
after the system measured along the circles A and B.
By these equations, the vane circulation T,
measured in the cylindrical sections or generally in
the stream surfaces of the meridional flow becomes
related to the circulations before and after the vane
system measured in sections normal to the axis of
the machine. According to equations (2-48) and
(2-49), this relation is simply

NT,=T,-T, (2-50)

It indicates an increase in circulation in the
direction of the flow (I';>T) for positive vane
circulation I',. This condition is satisfied for pump
rotors. For turbine rotors, one may either consider

I', as negative or change the definitions so as to
obtain equation (2-50) in the form

NT,=T,-T,

To relate the vane circulation T',, to the form of
the vane section in the cylindrical stream surface,
we return to consideration of the flow relative to the
vane system. It should be recognized that the vane
circulation I', is the same for the relative and
absolute flows through axial-flow rotors, because
these two flows differ from each other by a uniform
velocity U of that section. The difference in
circulation between the relative and absolute flows
is, therefore, the contour integral ¢ U; ds, which
can be shown to be zero, since U is constant in
magnitude and direction. The circulations I'; and T’
about the axis of the rotor differ between the
absolute and relative flows by 2#rU=constant.
Therefore, their difference I';— I =NT', is the
same for the absolute and relative flows; this

89



§2.5.2

agreement also proves the foregoing statement
regarding the invariance of T',,

The relation between the circulation T, around a
single vane and the vane shape is obtained by
expressing the vane force per unit width first in
terms of the lift coefficient Cy o,

2
F.=CL,°°?—V;£1 (2-51)

and second by the law of Kutta and Joukowski, as
expressed by equation (2-44) in the form

Fl =pW°°FU

Equating these two expressions of the vane force
F leads to

oW,

choFU = CL’WT,

and thereby

Ty

CL'°°=2wml (2-52)

From equations (2-49) and (2-50), it follows
immediately that

2nr
ry= W(VU,Z_ Vuin=tAVy (2-53)

where 2#r/N is obviously the circumferential vane
spacing ¢, and the change in the peripheral
component of the flow V-V is denoted by
AVy= — Awy. By substituting equation (2-53) into
equation (2-52), one finds

LAVt
CLo= o 1 (2-54)

The lift coefficient is related to the shape and
position of the vane by the angle of attack « . This
relation is particularly simple if the angle of attack
is measured from the zero-lift direction as shown in
figure 2-12. Then, the lift coefficient of an airfoil in
an infinitely extended stream 1is closely
approximated by

Cr o=27sin « (2-55)

where for real fluids the lift coefficient has a limited
maximum value of about 1.5. For higher angles of
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Figure 2-12. — Angle of attack referred to zero-lift direction.

attack (higher than approximately 14°), the lift
force does not increase with increasing «, and often
falls off slowly and irregularly. This so-called stall
limit of a vane or airfoil may be much lower than
C; =1.5 for unfavorable airfoil shapes and can be
somewhat higher than C; =1.5 for exceptionally
favorable configurations. The stall limits of the
vanes of turbomachines may differ appreciably
from C; =1.5; they are discussed in some detail in
section 2.5.4.

The zero-lift direction in relation to the vane
shape can be approximated by a line through point
C and the trailing edge (see fig. 2-12), point C being
located along the mean camber line about halfway
between the leading and trailing edges. This is only
a first approximation for an airfoil in an infinitely
extended stream. For a closer approximation, see
section 2.5.5, particularly figure 2-28.

Generally there is no assurance that vanes in a
turbomachine, or any other system of several vanes,
follow the same law (eq. (2-55)) as a single airfoil in
an infinitely extended stream. Therefore equation
(2-55) is used here for turbomachinery vanes in a
slightly modified form:

Cl o=27K sin o, (2-56)

where K is a correction factor intended to account
for the effect of the arrangement of a vane in a
system of vanes rather than in an infinitely extended
flow field.

With equation (2-54) relating the lift coefficient
to the change in the peripheral component of the
flow and to the solidity of the vane system and with
equation (2-56) relating the lift coefficient to the
angle of attack with the zero-lift direction of the
vanes, the desired connection between the flow and
the most essential geometric characteristics of the
vane system is established. (Note the relation
between vane shape and the zero-lift direction
stated previously and illustrated in fig. 2-12.) The
most important uncertainty in this chain of
relations is the correction factor K in equation
(2-56). The fact that departures of this factor from



unity are essential to avoid contradictions can be
demonstrated by the following reasoning:

Equation (2-54) indicates that for a fixed value of
C; » the deflection of the flow expressed by AV,
approaches infinity (if wo remains finite) as the
vane spacing ¢ approaches zero. However, the
approach to t=0 is obviously an approach to one-
dimensional flow conditions. Certainly AV
approaching infinity cannot be in agreement with
the one-dimensional theory for fixed inlet flow
conditions. To avoid this conflict, one must assume
that C;  and therefore (according to eq. (2-56))
the correction factor K are functions of the solidity
of the system [/t and approach zero as ¢/}
approaches zero. Thus one must investigate the
one-dimensional approximation of K for the
limiting case ¢//—0.

Equations (2-55) and (2-56) imply that for the
flow of a frictionless fluid one has replaced the
curved vanes of the system by infinitely thin,
straight-line vanes set at the zero-lift direction of
the curved vanes. Therefore, as ¢// approaches zero,
the discharge velocity ws must approach its one-
dimensional limit, the direction of the vane, which
in this case is the zero-lift direction. Figure 2-13
shows this limiting velocity diagram. (See also fig.
2-9 for the relation between the zero-lift direction
and the vane in a system.)

Equating the expressions for C; o given by
equations (2-54) and (2-56), one finds

AVyt .
YV’ —Ksin oy
woo
or

AVy !

TWq Sin «, /

From figure 2-13, one can read

Wqo SiN o= # cos 8,

Substituting this into equation (2-57) (for t/!
approaching 0) leads to

2 t
== 2-58
K T ¢cos B, { (2-58)

Figure 2-14 shows this one-dimensional approx-
imation of K as a function of ¢// with 38, as a
parameter.

Direction of vanes
(zero-lift direction) —~

Figure 2-13. — Velocity diagram of straight system of straight,
[frictionless vanes for limit t/1—0.

On the other hand, it should be clear from
equations (2-55) and (2-56) that for very large
values of ¢// the factor KX must approach unity (i.e.,
the value which applies to a single vane in an
infinitely extended flow field). The foregoing
considerations and figure 2-14, therefore, give the
tangents at ¢//=0 and ¢/[=o for the curves
describing the variations of K as a function of ¢//
and of 8,.

It is plausible and can be proven that, under the
well-known Kutta condition of smooth flow at the
trailing edge, the deflection of the flow by the vanes
can never be greater than that prescribed by the
one-dimensional approximation. This means that
the inclined X lines describing the one-dimensional

Vane angle,
15, P deg
T sl 10/ f 0~ 30~
8/ | 10, 60,7 50,7 40,7303,
/ 7 / 7
- 20/“( N
st
e 7 <2
S < 57 0
§ 10 > P
5 27[//
8 -
8 < Tangent of
® curves for! - o
s .5 .
3
3
0 5 1.0 15 2.0

Raiio of vane spacing to length, til

Figure 2-14. — One-dimensional approximation of cascade-
effect coefficient K for t/{—0 and t/!— co.
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values of K are upper limit lines of X for the given
values of the vane angle 3, (the angle between the
zero-lift direction and the axial direction). This
statement is, of course, only true for a straight
system of straight and parallel vanes. For curved
vanes, the discharging flow would, in the limit
t/I=0, be tangent to the trailing edge of the curved
camber line of the vanes. This limiting condition
could be obtained by using the angle §8,; of the
discharge vane end in equation (2-58) in place of the
angle 3, of the zero-lift direction. However, since
this solution could be a useful approximation only
in the immediate vicinity of ¢//=0, it is not of
significant practical value. (In sec. 2.5.3 the straight
lines in fig. 2-14, which represent eq. (2-58), are
shown to be fair approximations of the actual K
curves for a restricted but practically significant
range.)

Since K can never be greater than prescribed by
equation (2-58) and by the corresponding inclined
lines in figure 2-14, the actual curves of K plotted
against ¢// must approach these inclined lines from
below as t/{ approaches zero. On the other end of
the diagram, the actual K curves approach K=1 as
t/1 approaches infinity. This approach may be from
above or from below, since K, because of the
interaction between adjacent vanes in the system,
might be larger or smaller than 1.

Whereas this description restricts severely and
constructively the curves of K against ¢//, it does
not exclude major variations in K curves that might
be constructed within the bounds set by its limiting
value for ¢//—0 and t//—o. A rational, math-
ematical analysis of this situation is, therefore,
urgently needed. The results of such an analysis are
presented in the next section, together with a
summary of the design theory resulting from this
analysis in connection with the foregoing
considerations.

2.5.3 Results and Application of Theoretical
Analysis by Weinig of Straight Systems of
Straight and Parallel Vanes

The theoretical approach presented in the
previous section is in a somewhat indefinite state,
because the relation between the correction factor K
and the most essential parameters of an axial-flow
vane system (as seen in the development of any
cylindrical flow section) is not definitely
established.

Recall that K corrects the relation between the lift
coefficient and the configuration of a deflecting
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vane from a single vane in an infinitely extended
stream (K=1, eq. (2-55)) to the corresponding
relation for a vane as part of an infinitely long,
straight system of parallel vanes (eq. 2-56)).
Replacing every curved vane section in this
developed system of vanes by a straight line having
the zero-lift direction of the curved vanes, one
arrives at the previously mentioned straight system
of straight and parallel vanes shown in figure 2-15.
The vane shape shown in dotted lines might be a
physical interpretation of this diagram, but it is not
included in the following considerations.

This infinitely long system of straight vanes can
be treated by the theory of incompressible, invicid
flow in a reasonably simple and straightforward
manner. This was done by F. Weinig (ref. 8). His
derivation is not presented here, but his results
applying the flow through straight systems of
parallel vanes are quoted and represented in
graphical form.

From the preceding section, it is evident that the
most important result of an analysis such as
Weinig’s would be the exact determination of the
cascade-effect coefficient K, defined previously by
equation (2-56). Weinig’s results, which can be
regarded as exact for the flow of an invicid fluid
through a system or cascade of straight vanes (fig.
2-15), are presented in figure 2-16. Although this
diagram does not show zero regions of both
coordinates, one can estimate that all its curves
converge to K=0 at t//=0. Furthermore all curves
appear to approach K=1 asymptotically as t//
increases. These were the conditions for the curves
of K against ¢// derived in the previous section for
t/1—-0and t/1— oo,

A more accurate comparison between Weinig’s
exact curves and the approximations (or limiting
conditions) derived in the previous section is
presented in figure 2-17 for 8,=70° and 3,=20°,
that is, for a very substantial inclination of the
vanes against the axial direction (normal to the

Figure 2-15. —Straight system of straight and parallel
vanes.
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Figure 2-16. — Cascade-effect coefficient for straight systems of
straight and parallel vanes (from Weinig, ref. 8).

system) and for a small deviation of the vanes from
the axial direction. In addition to the previously
mentioned general agreement between the
theoretically derived curves and the straight-line
approximation, it is now apparent that the one-
dimensional approximations are indeed upper-limit
lines for K as the theoretical curves approach the
one-dimensional limit lines from below with
diminishing values of t//. The general agreement
between the theoretical curves and their asymptotes
for ¢/1=0 and t/l=o derived by independent
considerations 1is, therefore, a reassuring con-
firmation of Weinig’s results and the reasoning
presented in the preceding section.
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Figure 2-17.— Exact cascade-effect curves and approxi-
mations.

Figure 2-17 suggests a comparison between the
theoretical solution by Weinig and the one-
dimensional solution, which assumes that the flow
leaves the vane system parallel to its straight vanes.
This comparison is presented in figure 2-18 in terms
of the head coefficient Ciy= AVy/AVy, where AV,
is a fictitious change in the circumferential velocity
component corresponding to the one-dimensional
assumption that the entire flow leaves the vane
system exactly in the direction of its (straight)
vanes. Figure 2-19, the velocity diagram of the
system, defines AV and AV,
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IS | By, dog
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Figure 2-18. — Head coefficient, ratio of deflection of perfect flow AV to one-dimensional approximation AVy, for

straight system of straight, parallel vanes.
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Figure 2-19. — Velocity diagram of straight system of
parallel vanes compared with zero-lift direction.

Figure 2-18 indicates that the departure of the
flow from its one-dimensional direction is
negligibly small for t//<0.7. This departure (in
terms of AVy/AV ) is about 4 to 7 percent at
t/1=1 and increases rapidly for ¢//>1 (i.e., as the
circumferential vane spacing exceeds the vane
length).

The curves in figures 2-16 and 2-18 can also be
used for curved vanes with small but finite thickness
if the vane angle 3, is interpreted as the angle
between the zero-lift direction and the axial
direction. While these curves thereby lose their
rigorous meaning with respect to the flow of a
perfect fluid, at the same time they gain practical
meaning with respect to the flow of real fluids
through straight systems of moderately curved and
fairly thin vanes. This meaning of the Weinig curves
in figures 2-16 and 2-18 is further explored in
section 2.5.5 by comparison with cascade test
results.

2.5.4 Limitations of Flow in Vane
Systems of Turbomachinery

The limitations of the flow in the vane systems of
turbomachines are treated in this section. However,
since the principles of such limitations are the same
in all types of turbomachinery vane systems, the
application of the principles presented here is not
limited to axial-flow vane systems.

The flow in turbomachinery (and, in fact, in
many other systems) is limited by three independent
flow phenomena:

(1) With respect to liquids, by cavitation

(2) With respect to gases, by compressibility

effects

(3) With respect to all real fluids, by separation

or stall
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The first two items are treated also in other
sections of this compendium and are therefore only
briefly discussed here. The third item is introduced
in this section and is therefore fully discussed as far
as is justified with respect to the design of
turbomachinery.

2.5.4.1 Limitation by cavitation. — Limitation of
flow by cavitation is discussed in section 1.2.2 on
the basis of similarity considerations. The relation
of this limit to design parameters of the machine is
summarized in figure 1-18. Besides the flow
coefficient V,, ;/U; and the important suction head
coefficient 2g,H,/ V%n ;» this diagram also relates
the suction specific speed to the vane pressure
reduction coefficient (eq. (1-37) expressed in terms
of the relative velocity)

Pi— Py

P owd/2

which appears in the important equation

%3
HSU=C1§-g—’ +Op
o

w2

i
22, (1-42)
According to figures 1-7 and 1-20, the subscript J
refers to the maximum diameter D; of the rotor
opening at the low-pressure side of the rotor and is,
therefore, equivalent for pumps to the subscript 1
as used in the foregoing sections with respect to the
development of a cylindrical section through the
vane system, when this section is taken at the
diameter D;.

Figure 1-18 indicates that the blade pressure
reduction coefficient Cp, yin =0, should not exceed
0.25 in order to achieve a commercially acceptable
value of the suction specific speed S. Much lower
values of g, are required to reach the S values in the
vicinity of unity or higher which are demanded in
the rocket or condensate pump fields. It is,
therefore, prudent to examine the relation of the
pressure reduction coefficient C, i, =0, to other
characteristics of the vane system.

Figure 2-20 shows a typical pressure distribution
over the vane of an axial-flow pump rotor. The
mean static pressure in the flow approaching the
rotor is designated p;. With this notation, the
coefficient of the minimum vane pressure is
obtained by expressing equation (1-37) in terms of
the relative velocity w; and the minimum pressure
Pmin =Dy (vapor pressure):

P1—Pmin

Upch)mm: W
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Figure 2-20. — Vane pressure distribution in pump.

It is plausible to compare the pressure reduction
P1— Pmin With the average vane pressure difference
Ap,,. The definition of the lift coefficient of the
vane leads to the relation

_ Apgy _
CLe=owin e

The lift coefficient could also be referred to the
relative inlet velocity w; instead of the (vectorial)
mean relative velocity we, to arrive at another lift
coefficient:

_ Apgy w, .
CLi= g2 =CLesy (2-60)

The comparison between the vane pressure
reduction and the average vane pressure difference
now assumes the form

P11~ Pmin Cp min 9p
= £ = =q (2-61)
Apgy CL,I CL,I

Figure 2-20 suggests that the pressure ratio g may
not be too far from unity, which would mean that
the rectangular area (p| — pmin)! is not too far from
the area inside the vane pressure curve. Thus Cy ;
cannot be much greater than Cp i, previously
found to be limited to values below 0.25 if good
cavitation performance is required. However, since
we<w; for retarding (pump) vane systems,
equation (2-60) shows that C; o >Cp 1, that is, that
the resulting limitation of C; o is not quite as
severe as the limitation of C; |. Nevertheless it is

§2.5.4.1-2.5.4.2

evident that cavitation limits the lift coefficient
Cy w, Which is then likely to be considerably lower
than unity (i.e., lower than the stall limit of the lift
coefficient of a single airfoil in an infinitely
extended stream, which, as stated in sec. 2.5.2, is
about 1.5). While it is shown in section 2.5.4.3 that
the limits of lift coefficient for retarding vane
systems are lower than those for a single vane in an
infinitely extended flow field (because of this
retardation), it nevertheless must be concluded that
cavitation alone places an additional limitation on
the lift coefficient of axial-flow vane systems.
Equation (2-54) shows that this limitation leads, for
given deflections AV /wy to low values of t// (i.e.,
to higher solidities of axial-flow vane systems than
would be used without the need for good cavitation
performance). While this conclusion may impress
us today as obvious, it is a historic fact that, in the
early years of axial-flow turbomachinery develop-
ment, this conclusion was often not recognized, and
the result was very unsatisfactory cavitation
performance.

Also apparent from figure 1-18 are other
theoretical conclusions, in particular, the fact that,
for any suction specific speed, there is one optimum
flow coefficient V,, /U;. Furthermore there is a
possible flow regime in the field of fully developed
cavitation, as shown in figure 2-21. This rotor flow
problem can probably be approximated in any one
stream surface by one-dimensional reasoning. A
two-dimensional, theoretical solution is given in
reference 9. Significant are the three-dimensional
flow problems in a space of revolution (the liquid
moves radially outward, while the gas accumulates
in the center) and the flow problems of the sta-
tionary passages after the rotor (which alternately
receive liquid and gas flow). Figure 2-22 shows an
estimate of the three-dimensional flow through an
impulse rotor with fully developed cavitation.

2.5.4.2 Limitation by compressibility effects. — In
the beginning of the development of axial-flow
compressors, there was reason to believe that the
velocity of sound was an upper limit of the relative
velocity approaching an axial-flow vane system.
This belief was founded to a large extent on the fact
that cascade tunnel test results showed a rapid
deterioration of the cascade flow characteristics
before the tunnel velocity in front of the vane
system reached its critical or sonic value. Appar-
ently the tunnel flow was choking under these
conditions.
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u

Figure 2-21. — Axial-flow vane action with Sully developed
cavitation.

The foregoing test results were misleading.
Rotors with sonic and supersonic relative inlet flow
have been operated successfully. The explanation
used by this writer was that the rotor flow (or any
flow in an annular cascade) is circumferentially
infinite. Therefore the actual flow w., or Vs with a
substantial angle against the axial direction has a
freedom of adjustment by changing its (subsonic)
axial component. The principles outlined in section
2.4 are sufficient to explain this process on a quasi-
one-dimensional basis sufficiently to avoid any
major contradictions.

The flow of compressible fluids along cylindrical
sections through axial-flow vane systems is outlined
in section 2.5.6.

At present, it appears that the flow through axial-
flow (and other) vane systems of turbomachinery is
not limited by compressibility effects in any
absolute manner. Problems of convergence of
numerical or graphical solutions are likely to exist
when the meridional component of the flow reaches
the sonic velocity, but there is no reason why these
problems cannot be overcome. It must be re-
membered that De Laval used high supersonic flow
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in axial-flow impulse-turbine vane systems as early
as the turn of this century.

While there does not appear to exist any absolute
limit of velocities or Mach numbers due to com-
pressibility effects, there is a reason why supersonic
flow in vane systems (or any closed passages) may
lead to losses in efficiency. Supersonic flow in
closed passages has a tendency to change to
subsonic flow by a normal shock (or perhaps
several oblique shocks). This abrupt reduction in
velocity by a compression shock is connected with
an increase in entropy, which constitutes a loss in
the usual sense of efficiency. Flow at high
supersonic velocities, therefore, cannot be accepted
without some reservations regarding efficiency.

2.5.4.3 Limitation by separation or
stall. — Separation or stall is a phenomenon
occurring almost independently of the nature of the
fluid except for its dependence on the Reynolds
number (the ratio of inertial forces to viscosity
forces).

The phenomenon of separation or stall is
described very briefly in the later parts of section
2.5.2 in connection with the limits of the lift
coefficient C; and the angle of attack «, on airfoils.
Beyond certain angles of attack the lift does not
increase with increasing angle of attack, but either
remains constant or falls off in an irregular fashion,
in contrast to the regular behavior indicated by
equation (2-55). The reason for this phenomenon is
the fact that at increasing angles of attack the
pressure difference between the minimum pressure
and the free-stream pressure near the trailing edge
increases for constant free-stream velocity. As a
consequernce, the boundary layer of the flow cannot
negotiate this pressure rise; it breaks away from the
wall of the deflecting vane and forms a fairly wide
region filled with fluid in irregular motion (see fig.
2-23).

There are at least three reasons why the stall
phenomenon in axial-flow vane systems is likely to
be different from that on a single vane in an
infinitely extended stream:

(1) The vane boundary layers in axial-flow vane
systems are not plane and two-dimensional, as a
single vane in an infinitely extended stream, but are
skewed and subject to crosswise flow, called
secondary motions (discussed in sec. 2.5.7). No
quantitative predictions of the effect of secondary
motions on stall have yet been made, and only a
qualitative description of one particular effect of
such motions on stall can be suggested:; it is given in
section 2.5.7.
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Figure 2-22. — Estimate of three-dimensional flow in impulse pump rotor with fully developed cavitation.

(2) In vane systems, the separation region shown
in figure 2-23 is limited in width by the pressure face
of the following vane. This may limit the hydro-
dynamic effect of stall in vane systems. Reference 9
describes the earliest attempt known to this writer
to approximate this limitation by theoretical means.
Applications of this theory are so far limited to flow
with fully developed cavitation, mentioned in
section 2.5.4.1.

r Point of minimum pressure

_~ Point of separation

Figure 2-23. — Separation or stall on flow-deflecting vane.

(3) There is a difference in stall characteristics
between a single vane and a vane in a system if there
is a change in static pressure through the system.
This difference can be approximated theoretically
and by generalizations of test results in a manner
that is sufficiently simple to permit application to
the early phases of the design process of axial-flow
vane systems. Separation or stall is caused by an
excessive pressure rise along a solid flow boundary.
The pressure rise that may lead to separation on any
vane within the vane system of a turbomachine is
the value py ~ p,,in» sShown in figure 2-20, that exists
just before the onset of separation. The effect of the
general system configuration on this pressure rise is
shown in figure 2-24, in particular its dependence
on py/p; and wo/wy. The kinetic energy available to
climb the pressure hill py—p,,;, is evidently that
which exists at the point of minimum pressure and
maximum relative velocity ow2 /2 =D, = Dpmin-
Thus the equation

A:PZ_Pminzpz_Pmin (2-62)
pwmax/z Po—Pmin
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Figure 2-24. — Vane pressure distribution in different
Sestems.

may well be expected to be a valid criterion for the
danger of separation or stall. Ackeret told this
writer that he used this criterion as early as 1928,
but it was apparently not published before 1942
(ref. 10). He stated that the maximum value of the
ratio (P2~ Pmin)/ @y —Pmin) would be 0.8. He
added, “‘Of course it cannot be quite that simple,
but it is amazing how well this criterion works.”’

In 1955, NACA used the same criterion in the
form (w2, —w3)/wi _ (ref. 11). However,
Lieblein (refs. 12 and 13) replaced this pressure
ratio by a velocity ratio which may be referred to as
the local diffusion factor:

Wiax — W2
D loc=

WIN(IX

(2-63)

Plotting the wake momentum thickness (divided by
the blade chord) against D,,. shows that at
D;,-=0.4 the momentum thickness is about twice
that at the lowest Dy, values tested (0.15 to 0.20),
and for Dy,.>0.5, the momentum thickness
increases so rapidly as to suggest separation.
Considering that

K= W;nax - w% _ Wmax — W2 Wpax twp
Wrznax Winax Winax
w + w
= Dy — =22 (2-64)
Wax

and that for a number of cascades investigated
W2/ Wyax ranges from about 0.46 to about 0.66 (see
sec. 2.5.5), one obtains a mean value of K4=1.56
Dy,.. For Dy;,.=0.5, one finds K4=0.78, which is
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as close to Ackeret’s limit of 0.8 as could be
expected.

The foregoing consideration and the resulting
separation coefficient K4 and D, have the
practical disadvantage that neither the minimum
pressure p,.;, nor the corresponding maximum
velocity w,,,. is generally known, since vane system
designs are usually based on the velocity diagrams
in front of and behind the vane system. This
statement also applies to the apparently inter-
mediate velocity diagram in figure 2-9 containing
W, because this diagram is obtained by averaging
between the inlet and discharge velocity diagrams
and, thus, is not independently established.

The foregoing considerations on limitations due
to cavitation do involve the minimum pressure in
the vane system ppin in a significant manner.
However, this pressure was related to the average
pressure difference across the vanes Ap,, and the
lift coefficients C;; and C; o in the manner
indicated by equations (2-60) and (2-61) by
introducing the pressure ratio ¢ = (9 ~ pin)/ APgy-
It is the relation quoted last which is used here to
connect the parameters K 4 (eq. 2-62) and Dy, (eq.
2-63) to the known flow conditions on the inlet and
discharge sides of the system.

The first attempt in this respect was made by this
writer in 1934 as part of his Ph.D. thesis at the
California Institute of Technology (see ref. 14, secs.
64 and 111). The principles of this attempt are as
follows:

The pressure rise py —p,in is divided into two
parts:

P2 Pmin=02—P1) + V1~ Pmin) (2-65)

For cylindrical sections through axial-flow vane
systems, we use the usually close approximation

w2 — wl

p2—p1=p 12 < (2-66)

The second part of equation (2-65) is related to
the lift coefficient C; o, by equations (2-59), (2-60),
and (2-61) as follows:

_P1=Pmin APy

P~ Pmin _
WL/l Apa pWL/2

=9C;, (2-67)



It is now natural to make all terms of equation
(2-65) dimensionless by dividing by the velocity
pressure of the vectorial mean velocity pw%o/2.
Thus equation (2-65) appears in normalized form as
follows:

P2=Pmin _ P2~ P1
= = + 2_
Obviously

o o
p2—p1= E(W%— wi) = i(wl +w)(wy— wp)

When the approximation we =(w|+wy)/2 is
used, equation (2-68) can be written in the form

Km_ 1—W2/W1

= 2-69
1+W2/W| ch'w (2-69)

since, according to equation (2-54)

CLw=2="Y7 (2-54)

equation (2-69) does indeed express a separation
criterion entirely in terms of the flow conditions in
front of and behind the vane system considered.

The first experimental test of this approach to the
problem of separation in turbomachinery vane
systems came through the important paper by
Howell (ref. 15). Figures 2-25(a) to (c) are taken
directly from Howell’s paper. Howell concluded
from these data that neither the angle of deflection,
nor the lift coefficient, nor the pressure recovery
coefficient (py—p|)/(pw}/2) is an adequate
criterion for the occurrence of separation or stall in
such vane systems. However, when the same data
are plotted in the form of the separation coefficient
K under the assumption g =1 (fig. 2-25 (d)), they
collapse to a rather narrow bundle of nearly
horizontal curves, which suggest that K, lies
between 1.5 and 1.7.

In 1953, Lieblein, Schwenk, and Broderick (ref.
12) also worked to establish a separation criterion
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Figure 2-25. — Aerodynamic limits of axial-flow compressor
operation according to Howell (ref. 15).

that could be calculated from the inlet and

discharge conditions alone (i.e., without direct

knowledge of p.;,); this effort led to the now

widely used diffusion factor
wy AVy T

D=1- 24

—-— 2-7
wp 2wy |/ (2-70)

According to equation (2-54), this diffusion factor
can also be expressed in terms of the lift coefficient
CL,oo:

2-71)

Again using the approximation we, =(w;+ w3)/2,
one finds

W) 1 L)
=1- 224 =< -72
D=1 w1+SCL’°°(1+w,) 2-72)

While different from the separation coefficient
Ko (eq. (2-69)), both separation criteria can be
expressed in terms of the lift coefficient C; o and
the ratio of retardation (or acceleration) of the
relative flow wy/w).

As in the case of the local diffusion factor Dy,
the wake momentum thickness was plotted against
the diffusion factor D. A rapid rise in the
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momentum thickness beginning at D=0.60
indicated the beginning of separation at that D
value. At about D=0.4, the momentum thickness
increased to about twice its minimum value.

The comparison between various criteria of
separation, or stall, is completed by expressing the
Ackeret pressure ratio

_ P27 Pmin _ P2~ Pmin
ows /2 Po—Pmin

max

(2-62)

in a form not depending directly on a knowledge of
DPmin- Evidently, according to equations (2-66),
(2-60), and (2-61) and figure 2-20,

Kq= P2=Pmin _ P2 P1 +P1~ Dmin
Po=Pmin Po—P11TP1 - Pumin

_ wi-wi+qCp Wl

= 2-7
W% + qCL. 1 W‘l‘Z ( 3)
Considering that (approximately)
w2 (1 + wy/wy)?
Cra=Cro—3=Clo— (2-74)
Wy 4
Ackeret
separation
factor,

Pressure reduction ratio, qC| .,
or lift coefficient, C| o

and with (wf—w3)/wi=(1+wa/w))(1—wy/w)),
one obtains

D
K, = P2~ Pmin
Po = Pmin

(L wo/ w1 = wy/w)) + GC ool + wa/wy)*/ 4
1+qCp oll + wo/w )/ 4

K= (1 ~wo/w)) +qCr (1 +wa/wy)/4 2.75)
1/(1 +W2/W1)+qCL,w(l + W2/W1)/4

which establishes K 4 as a function of gC}  and of
the retardation (or acceleration) ratio w,/w, like
K according to equation (2-69) and the diffusion
factor D according to equation (2-72). (This result
and fig. 2-26 depend on the assumption that
W ={Ww) + w3)/2, which is not true for systems with
small angle 3,, e.g., many diffuser and impulse
vane systems.)

A comparison among the various separation
criteria or diffusion factors presented by equations
(2-62) or (2-75), (2-69), and (2-70) or (2-72) is given
by figure 2-26, where these diffusion coefficients
are plotted as functions of the retardation (or

Wislicenus
NACA diffusion factor, separation
D factor,
Ko
R FAL
// 1.7
/—/,,,/4 1.5
// L3
NACA cascade data
O CL'w
® QCL,W
-~ For definition of pint desig- |
nations 1 to 14 see table 2-1
9 L0 L1 17 1.3

Ratio of change in mean relative velocity, Wolwy

Figure 2-26. — Separation limits of straight systems of parallel, stuggered vanes. (Data from ref. 16.)



acceleration) ratio wp/w; and of the pressure
reduction ratio gC; . The scale for ¢C; o serves
also as a scale for the lift coefficient C; o with
respect to the diffusion factor D, with respect to the
NACA cascade data (ref. 16)(open symbols), and
with respect to the dotted curves representing
maximum values of C » according to the same
NACA data (ref. 16).

The numbers given with every test point plotied
are associated with definite vane-system char-
acteristics by table 2-1. The point coordinates are
taken from the cascade information presented in
reference 16 and section 2.5.5 and represent cascade
operating conditions at or near optimum cascade
performance. The points plotted, therefore, do not
mark maximum C; & and gC; o values, but rather
conditions that may be used as design values.

The shaded area between the curves Ko =1.5 and
K. = 1.7 represents Howell’s data from figure 2-25.
The wy/w; range of this area was estimated from
figure 2-25(d).

The shaded region on the D =0.60 curve marks
the beginning of a very rapid increase in the blade-
wake momentum thickness observed by NACA. It
may well represent the beginning of separation and
thereby an upper limit of C; o, although a few test
points fall above this region. No information is
available about the wa/w, range of this region.
Since a marked increase in wake momentum
thickness was already observed at D =0.4, the entire
region between the D =0.4 and D=0.6 curves may
be considered for design purposes.

TABLE 2-1. - POINT DESIGNATIONS IN FIGURE 2-26 AND
CORRESPONDING [LLUSTRATIONS
{Data trom ref. 16 ]
Point Vane inlet flow | Solidhity, | Vane shown in
angle, (ot ftgure 2-27 -

FL
1
deg

1§ NACA BO=(1~) -1 i
2 NACN BHI-(1) -10 i
NACA 6L-(1%) -1 o
ol NACA B -8 =10 5
i NACA 65-(19) =10 40
[ NACA 653-(2H -10 15

0 ()
1) ()]
O ©
[l (G
5 ©
0 i}

— v he e e e e e e e

Tl NACA 65-2H-10 i 5 )
= NACA 65-(15) -10 6 5 )
] NACA 65-(12)-10 70 i)

1 NACA 6H-(1H -1 0 25 [13]

11 NACA 63-(1)-10 70 5 *)

12 NACA 63-(1% A, 13)-10 5 b} @)

14 NACA 65-(1~ A, l\h)flU 10 5 {m)

2
Lt | NACABG-(1% A, 1 )-10 60

5 {n)

§2.5.4.3

As stated by Ackeret, his limit curve K4=0.8
marks an upper limit of boundary-layer retar-
dation. This limit line cannot be used for moderate
retardations of the mean relative flow, say above
w»/wy =0.8, because it would lead to unreasonably
high values of gC; . The Ackeret curve sets a
lower limit for w,/w, rather than an upper limit for
ch,oo-

It is also doubtful whether the D=constant
curves can be used for wy/w;>0.9, because of the
very high C; o values resulting from such appli-
cation of the D=0.6 curve. On the other hand, for
wy/wy=0.6 and D=0.6, one obtains C; »=1.0,
which seems reasonable in view of the available test
data.

Since the K, =constant curves are the flattest
curves of separation criteria, perhaps they can be
applied in the regime of accelerated mean flow
(wy/w>1). The K, parameter was originally
intended to be limited to values between 1.5 and
1.7, as these limits correspond to the limits of the
lift coefficient for a single vane in an infinitely
extended stream. The condition wy/wi =1 is
supposed to correspond to this case, and equation
(2-69) shows that ¢C; =Ko for wy/wi=1.
However, for stronger retardation of the mean
flow, say for wy/w;<0.7, it seems that 1.5
<K, <1.7 is rather conservative; in this region,
1.7 <K 4 =<2.0 (or 2.2) is more reasonable. Thus the
arrangement of vanes in a straight cascade has some
beneficial effects with respect to separation, if the
mean pressure changes are taken into account.

No conclusion is drawn here regarding the
relative merits of the three separation criteria or
coefficients considered (K 4, D, and K). Accurate
separation limits cannot be established in terms of
any one of these coefficients any more than a.
definite separation or stall limit can be defined for
the lift coefficient of a single airfoil in an infinitely
extended stream. However, consideration of these
separation coefficients throws considerable light on
the fundamentals of separation or stall in turbo-
machinery. One is tempted to draw the plausible
conclusion that the adverse pressure gradient on the
low-pressure side of the vanes, while important (if
properly normalized), is not the only criterion of
separation. The curvature of the flow as well as
secondary fluid motions may offer additional
criteria of separation. However, so far only the
dimensionless pressure gradient has led to criteria
which are sufficiently simple to be used by the
designer.
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Inspection of figure 2-26 may lead to the general
conclusion that, for vane systems with retarded
mean relative flow, the lift coefficient Cr o at
design conditions should be between 1.0 and 1.5
and should diminish with diminishing ratio of
retardation wy/w;. Furthermore the ratio of
retardation wy/w; has a lower limit near wy/w,
=0.6.

With accelerated mean relative flow (wy/w;>1),
the lift coefficient C; o can progressively be
increased with increasing ratio of acceleration
wy/wy, but upper limits of C; o for these con-
ditions are not yet established.

2.5.5 Analysis of Cascade Test Results and Mean
Streamline Method

It should be clear from the preceding section that
a great deal of experimental work on flow through
axial-flow cascades (i.e., cylindrical sections
through axial-flow vane systems) was done. Initially
Great Britain led in this work. Today the work of
NACA supplies us with most of the information on
flow through straight systems of staggered, parallel
vanes (refs. 16 to 18). An interesting summary of
these findings has been presented as a series of
related graphs called carpet plots (ref. 16). Good
correlations have been found between the flow
observed in straight cascades in cascade tunnels (the

cascade of vanes being stationary) and the flow in
equivalent rotating systems in a space of revolution
(refs. 19 and 20) (with the possible exception of
flow at high Mach numbers).

The vast amount of experimental information
and its theoretical interpretation cannot be covered
here. Instead an attempt is made to extract from
some of the data such information as may even-
tually be used for design purposes.

Figures 2-27(a) to (n) show vane systems selected
from reference 16, and figure 2-27(0) shows one
from reference 17. All pressure distributions are
taken from NACA test results, but are plotted
against the axial extent of the vane system for
reasons that become apparent later.

All parameters from the vane systems of
reference 16 used in this presentation of the theory
and in the design of axial-flow vane systems (ch. 3)
are evaluated and listed in table 2-1I. These
parameters are

(1) The lift coeficient referred to the inlet
velocity, determined from the area inside the
pressure distribution curve on the basis of

APgy

CL,] = W—?/—Z (2‘60)

Y
where Ap,,=(1/y,) 5 Ap dy, y, being the axial
o

extent of the vane.

84,37 - tpo - pmm)/@wi/?) -
AWy g T
S ia Mean velocity ‘ P 2, !
Fraction of AWU,S?‘-‘ LT b -y | / curve [T g” 92};‘@1]1’) ‘

chorq to which J ; ' ' Fraction Fraction ] / 2(2 P2~ Pmin
velocity vector ! of mean of chord Py pmm; pwy2 ) D'—P'_ = 0,76
corresponds ~ streamline 7 i ‘ 0 " Pmin |
4o 730 s e N T !
“ #.67 "
WI 8

[ - \
W2 =0, 617 W] 1\ Y

Zero-lift

glrrg‘gion By
- 0 ~

Camber line -
(a)

(a) Vane, NACA 65-(18)-10; inlet flow angle 8,, 60°;
17.5°; angle of deflection 8, 25.2°.

Figure 2-27. — Characteristics of cascade of vanes. (See table 2-11 Jor cascade parameters.)
local mean velocity w; and static pressure Pu,; corresponding to that velocity (i.e., (p,
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\
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(b) Vane, NACA 65-(18)-10; inlet flow angle 8,, 30°; solidity 1/1, 1.0; vane angle 8, 7°; inlet angle of
attack against baseline «,;, 23°; angle of deflection 6, 36°.
(¢) Vane, NACA 65-(18)-10; inlet flow angle B8,, 30°; solidity i/t, 1.5; vane angle 3., S°, inlet angle of artack against baseline o,
25°, angle of deflection 6, 41.6°.
Figure 2-27. — Continued.
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o Zero-tift
direction
'//J /*W2=O.739 Wl
/ s S
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\ 4 Mean static-
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Distance corresponding to fraction of chord

\ | pressure
curve
—.2
\
. 0
Lo L5 2.0
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(d) Vane, NACA 65-(18)-10; inlet flow angle 8, 45°; solidity 17t, 1.0; vane ungle 3., 26°; inlet angle of attack against baseline ay,
19°; angle of deflection 9, 30°.
(e) Vane, NACA 65-(18)-10; inlet flow angle B, 45°; solidity 1/t, 1.5; vane ungle 3,, 21°; inlet angle of attack against baseline o,
24°; angle of deflection 9, 38.4°.
Figure 2-27. — Continued.
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“: AWm'b
"o Zero-lift
~ direction

D w0y
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1 ' - L0

S W, 0.803w)

\\‘ L7 Mean static-
7 pressure
| curve

Mean
streamline -
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LA pressure
Yeurve
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() Vane, NACA 65-(24)-10; inlet flow angle (3,, 45°; solidity /1, 1.0; vane angle B, 19°; inlet angle of attack against baseline a,, 26°;
angle of deflection 6, 40.9°.
(g) Vane, NACA 65-(24)-10; inlet flow angle (3, 45°; solidity {/1, 1.5; vane angle 3,, 18", inlet angle of attack against baseline
«y, 27°; angle of deflection 8, 46.9°.
Figure 2-27. — Continued.
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(h) Vane, NACA 65-(18)-10; inlet flow angle 3,, 60°; solidity {/1, 1.5; vane angle 3,, 38°; inlet angle of attack against baseline o/,

22°; angle of deflection 6, 31.9°.

(i) Vane, NACA 65-(12)-10; inlet flow angle 8,, 70°; solidity 1/t, 1.0; vane angle B, 57.2°; inlet angle of attack against

baseline a;, 12.6°; angle of deflection 8, 14.4°.

() Vane, NACA 65-(12)-10; inlet flow angle 3,, 70°; solidity 1/t, 1.25; vane angle By, 57.8°; inlet angle of attuck against

baseline o), 12.1°; angle of deflection 8, 15.6°.
Figure 2-27. — Continued.
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(k) Vane, NACA 65-(12)-10; inlet flow angle 3;, 70°; solidity I/t, 1.5; vane angle 3,, 54°; inlet angle of attack against baseline o,

16.1°; angle of deflection 8, 19.7°.

(/) Vane, NACA 65-(18A,1ly,) 10; inlet flow angle 8,, 45°; solidity 1/1, 1.0; vane angle 8., 30.5°; inlet angle of attack against

baseline «,, 14.3°; angle of deflection 8, 26.7°.

Figure 2-27. — Continued.

(2) The lift coefficient referred to the mean
relative velocity w,, calculated independently from

2
w1

CL,OO: CL,I ;—2— (2-60)
o

and from equation (2-54) expressed in terms of the
turning of the relative velocity

AWU !
C; =2"H- -54
Le=27Y 7 (2-54)
The relatively good agreements between the two
values of C; o are quite reassuring.
(3) The pressure reduction ratio

Cp,min
Cr

P\ = Pmin _

(2-61)
Apyy

q:

where

P 77)

(4) The pressure reduction coefficient gCy o,
which is plotted in figure 2-26. The value of C} o
used in figure 2-27 is the average of the two values
determined from equations (2-60) and (2-54a).

(5) The velocity ratios we/w; and wy/wj, by
scaling from the velocity diagram, and
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(m) Vane, NACA 65-(184,1y,) 10; inlet flow angle 8, 45°; solidity I/1, 1.5; vane angle j3,, 28.5°; inlet angle of
attack against baseline «;, 16.3°; angle of deflection 8, 34.1°.
(n) Vane, NACA 65-(18A4,1,) 10; inlet flow angle 3;, 60°; solidity 171, 1.5; vane angle B, 43.5%; inlet angle of artack
against baseline «,;, 16.4°; angle of deflection 6, 28.7°.
Figure 2-27. — Continued.

Wmax _ o [ Po~Pmin Diye= K%Lﬂ

Wi owi/2 max

=1- "2

Winax _ { Wmax W Wrnax
We (W) (W;)
the last of which is used in section 2.5.4 to compare 1= wy/w,
the separation limit Dy,.= 0.5 with the Ackeret limit K= T+ wy/wy Cro
of KA =0.8.

(6) The separation coefficients

_ P2 Pmin B _1_ " 1 ( &)

K4 Do Do (2-62) D=1 " + 8CL'°° 1+ "
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(0) Vane, NACA A;K-; inlet flow angle (3, 30°; solidity 1/1, 1.8; vane angle B,, 34°; inlet angle of attack against baseline «,
63.40°; angle of deflection 8, 88.6°; camber angle 6, 95°.
Figure 2-27. — Concluded.

(7) The Weinig head coefficient (see sec. 2.5.3) Solidity,
Ut
Awy a 0.5
H= A0 1.0
Aw ° L
U o L5
. . . =] 1.50
which is taken from figure 2-18 and permits the a LB
determination of the zero-lift direction in relation Open symbols denote 65-series stan-
to the vane profile. A line drawn in this direction dard vanes .
i . Solid symbols denote trailing-edge-
through the trailing edge of the vane intersects the loaded vanes
mean camber line of the vane profile at point C. Half-solid symbol denotes turbine vane

The location of this point of intersection is plotted
in figure 2-28 as a function of the vane angle. Since
the angle between the zero-lift line and the camber
line is quite small, the scatter of these points does
not represent a serious uncertainty about the
direction of the zero-lift line. Figure 2-28 replaces
the previously cited rule (based on the ideal-flow
characteristics of single airfoils with circular-arc
camber lines) that the zero-lift line intersects the
mean camber line at the halfway point between the
leading and trailing edges.

Fraction of chord from leading edge

. : I 0 20
It is l}oped .that .the foregoing con51derat.10ns in Vane angle, B,. deg
connection with figures 2-27 and 2-28 give the
reader a reasgnably .V““d picture of the relation Figure 2-28. — Location of intersection C between zero-lift and
between certain physical parameters and the shape camber lines.
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and form of flow in straight systems of parallel,
staggered vanes. Such a picture is certainly needed
for an attack on the problem of designing such a
vane system for given flow conditions (i.e., given
inlet and discharge velocity diagrams). However,
the information given is not sufficient for a solution
of the design problem.

One method of attack would be to select from the
large number of cascade configurations that have
been investigated the configuration which meets the
prescribed operating (or flow) conditions. Such an
attack would be possible if one could interpolate
between the discrete vane system configurations
that have been investigated. Reference 16 provides
the means for this type of an attack on the design
problem, namely the vane shapes and systems
investigated by NACA.

In spite of the merits of the approach described in
references 16 to 18, the method is still limited to the
basic blade shapes used in these investigations and
thereby to some common characteristics of their
performance. The most significant shortcoming of
the 65-series vanes affecting their use in pumps (or
compressors) is probably the fairly large pressure
reduction (and velocity increase) on the suction side
of the vanes. According to section 2.5.4 and figure
1-18, the coefficient of minimum pressure Cp min
= (D1 — Pmin)/ (pw3/2) should not be greater than
0.3 to obtain acceptable cavitation performance.
The NACA 65-series vane systems presented in
figures 2-27(a) to (n) have in only one case a Cp, min
value as low as 0.308. The next lowest is 0.375, the
next is 0.443, and all others are above 0.5.
Cavitation-free performance, therefore, cannot be
ensured by selection of a desirable 65-series system
configuration; instead it is necessary to develop new
configurations with more favorable pressure and
velocity distributions. The same seems to be
necessary for compressor vane systems.

A method of designing cascades of parallel,
staggered vanes for prescribed vane pressure dis-
tributions is presented in chapter 3, specifically in
sections 3.2.4 and 3.2.6 to 3.2.8. In this section only
the basis of this design method is outlined; it is in
the form of a particular method for the analysis of
cascade test data, which may be called the first
phase of the mean streamline method. This method
relates the vane pressure distribution to the vane
shape by means of the mean or average path of the
plane flow through the vane system, which is called
the mean streamline. These relations can be
established definitely for vane systems which have
been subjected to complete cascade tests, so that the
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vane pressure distribution is empirically known for
given cascade and vane geometries and for known
inlet and discharge velocity diagrams. The relations
between vane pressure distribution and cascade and
flow geometry, so established, are presented in
dimensionless and otherwise generalized forms. It is
reasonable to assume that they represent useful
approximations of the corresponding relations for
vane systems with geometries different from.those
which were investigated experimentally. The
generalized relations between flow and cascade
design characteristics are the basis for the mean
streamline method of cascade design which is
presented in chapter 3.

The construction of the mean streamline is based
on the simple idea that the progressive changes in
the circumferential component of the mean (or
average) flow through a vane system can be related
to the pressure distribution along the vanes, that is,
to the distribution of the circumferential forces
applied by the vanes to the flow. Furthermore the
changes of the meridional (axial) component of the
mean flow are related by the condition of continuity
to the blockage effect of vanes with finite thickness
and to the changes of the passage width normal to
the plane of the cascade flow (actually a cylindrical
surface). For compressible fluids, changes in the
fluid density enter into this relation.

In principle, the method is quite old. This writer
found it first in the initial edition (1924) of
Pfleiderer’s well-known book Die Kreiselpumpen
(ref. 21) under the term point by point calculated
vanes. In Pfleiderer’s book, it is not the peripheral
component and the meridional component of the
velocity that are changed, but rather the magnitude
of the relative velocity that is changed progressively
from w; to wp. (It is quite possible that the
principles of this method were known before this
application by Pfleiderer.)

The mean streamline method as outlined in this
section is most directly described by Ackeret in
reference 10, except for the fact that Ackeret
obtained the relation between the mean streamline
and the mean camber line of the vanes by
theoretical means, whereas in the present treatment
this relation is obtained on the basis of the NACA
tests of 65-series vane systems.
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The change in the meridional velocity component
Vi is illustrated in figure 2-29. Evidently

AQ=V,, Ab(t—DN=V,, Ab tN(l - ;) (2-76)

where AQ is the volume flow rate passing through
the annulus with the extent Ab in the meridional
plane and normal to the meridional flow, and N is
the number of vanes in any one system. The
circumferential vane thickness 7 should include an
estimate of the displacement thickness of the vane
boundary layers.

For incompressible fluids, AQ=constant. For
compressible fluids, its changes have to be
determined on the basis of the information given in
section 2.4; these changes are discussed further in
section 2.5.6.

It is evident that equation (2-76) is nothing but
the condition of continuity between two meridional
stream surfaces in a space of revolution. Under the
one-dimensional assumption of uniform meridional
velocity distribution over the entire cross section
B-B in figure 2-29, one can substitute the total flow
rate Q for AQ and the total width b for Ab.
However, the following considerations are in-
dependent of this simplifying assumption.

The change in the peripheral velocity component
wy is determined by the equality of the change in
circumferential momentum and the same com-
ponent of the blade force (see fig. 2-30). This
relation is, of course, essentially the same as that of
Euler’s turbomachinery equations (2-9 and 2-12).
For the elementary step Ay in the axial direction,
this relation assumes the form

w w Ay=AF cos =Ap Ab Al cos 8 2-77)
N ay
where N is the number of vanes.

By the condition of continuity, p AQ/N
=constant. Furthermore A/cos 8=Ay. Hence
equation (2-77) appears in the form

aTw_yU Ay=Awy=constant X Ab Ap Ay (2-78)

Thus Awy, is proportional to the elemental strip

of the vane pressure diagram Ap Ay if the vane
pressure is plotted against the axial extent y of the
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Development of section A-A

—
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Figure 2-29. — Change in axial velocity component V,,.

vane system. This is the reason for this arrangement
of plotting in figures 2-27, 2-30, and 2-31.

The schematic for the mean streamline method is
illustrated in figure 2-31; the method may be
described as follows: Determine the steps Awy; , of
the peripheral velocity component according to
equation (2-78) in the form

Awyx _ Apy Ay, Aby (2-79)
AWy

E Apy Ay, Ab,
a
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Figure 2-30. — Change in peripheral velocily component wy in
retarding vane system.

where the subscript x may designate any of the
stations a to f along the mean flow path through the

S
system. The sum E Apy Ayx Abx can be approx-
a

imated by the area of the vane pressure diagram,
plotted against the axial extent y, by

J S
E Apy Ay Aby = ( E Apy Ayx) Abg, (2-80)
a

a

For relatively large variations in Ab,, the

b -
z
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Tangents to mean
streamline 2
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f
summation E Apy Ayx Abx must be carried out
a

numerically, by using the local values of Ab,.

The corresponding changes in the axial (merid-
jonal) velocity component V,, are determined
according to the condition of continuity (eq.
(2-76)). For incompressible fluids, AQ=constant,
and therefore

Vm, il Abl = Vm,x(t - TX)AbX
or

Vi x t Ab
= = (2-81)
Vm,l (t— 704Dy

where the index x denotes stations a to f in figure
2-31, and Ab and V,, | are measured in front of the
vane system. Of course, one could also refer to V,, »

-and Ab, behind the vane system. For strictly axial-

flow systems, obviously
[ =t =ty=ty=constant
It has already been mentioned that 7, should

include an estimate of the displacement thickness of
the vane boundary layers and will therefore not go

NN
N Apc
i

Stagnation | \ '
pressure— \ |
Pl
2
ot —— DWI/Z —_— T
owd / Pmin
p,min 5~

Figure 2-31. — Schematic for mean streamline method.
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to zero behind the vane system. Figure 2-27 gives
some indications of this effect. The boundary layers
on the casing and hub walls can be considered by an
appropriate (estimated) reduction of Ab or by an
increased allowance for the displacement thickness
of the vane boundary layers.

Often it 1is advantageous to account for
boundary-layer growth and blade thickness
separately by drawing a smooth curve (nearly
straight line) a,f in figure 2-31 from the end of the
inlet velocity vector w) to the end of the discharge
velocity vector wp; this line includes an axial
addition gf, allowing for boundary-layer effects on
the meridional velocity component. The latter can
include estimates of all boundary-layer effects. If
so, the effect of blockage by the vane thickness 7
alone (without boundary-layer effects) can be
expressed as follows:

Vioxt =V o x+ 4 Vi = 75)

The subscript o is defined in figure 2-31 as an
example in connection with the station x=d. The
foregoing equation can easily be converted into the
form

AV o T/t

Vm,o,x -7/t

(2-82)

If, as suggested previously, V, , . takes
boundary-layer effects into account by being drawn
to the line a,f, then 7, in equation (2-82) should not
include the displacement thickness of the vane
boundary layer, since all boundary-layer effects are
considered in locating point f and thereby the line
aof. This constitutes a substantial, practical
simplification. The nonlinear growth of the
boundary layer along the vane can be taken into

~ . Zero-lift line

- Zero-lift
8 Jine

Direction of flox

account (qualitatively) by giving the line a,f a
slightly convex shape when seen from the top, that
is, by letting the vertical distance between the line
a,g (the frictionless flow variation line) and the line
a,f increase slightly faster in the beginning (near a,)
than toward the end (near f).

With the points a, b, ¢, d, e, and f in the velocity
vector diagram of figure 2-31 located according to
equations (2-79) and (2-81) or (2-82), one can draw
the intermediate mean velocity vectors from point 0
to the points a, b, ¢, d, €, and f along the curve af in
the velocity vector diagram (in fig. 2-31) and
construct the mean streamline by drawing its
tangents at stations a, b, ¢, d, e, and f parallel to the
corresponding mean velocity vectors. This con-
struction defines the mean streamline.

From the analysis of existing cascade data the
vane shape generating the vane pressure difference
Apy and the corresponding changes in velocity from
w| to w; are known. This vane shape, particularly
its curvature, may now be characterized by the
normal distance An between the mean streamline
and the mean camber line (see figs. 2-31 and
2-27(a)); the location of these two lines relative to
each other can be found by drawing the mean
streamline through the trailing edge of the vane.
Evidently the distance An describes the departure of
the actual vane from its one-dimensional approx-
imation, which is the mean streamline.

The normal distance An between the mean
streamline and the camber line may, of course, be
normalized by dividing it by the chord length / of
the vane. The distance An can be further
generalized by the assumption that it changes
proportionately to the lift coefficient Cr, o of the
vane. This proportionality follows for a vane in a
straight-line stream from geometric reasoning
illustrated in figure 2-32, which shows two camber

Figure 2-32. — Relation between departure An of mean camber line from direction of flow and lift coefficient expressed
by angle of attack o between zero-lift line and direction of flow.
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lines, one characterized by the subscript 0 and the
other by symbols without subscripts. If the camber
ratio An/An,, is assumed constant along the vane
and the small changes in the vane length / with
changes in the camber are neglected, the sine of the
angle attack o against the zero-lift line varies
proportionally with An (at any one location). Since
the lift coefficient C; o is proportional to the sine
of the angle of attack « measured from the zero-lift
direction, it follows that An changes proportionally
with Cy « in a straight stream. The application of
this proportionality to the flow in a cascade of
vanes, where the mean streamline describes the
direction of the mean flow, confirms this theory. It
is, therefore, permissible to define a standard,
normal distance An| between the camber line and
the mean streamline by C; o =1, which leads to the
relation

Anp= — (2-83)

In this manner, the deviations of the standard
65-series cascades represented in figures 2-27(a) to
(k) could be brought into a reasonable relation to
each other. Figure 2-33 shows as a heavy solid curve
the maximum deviation (Any/0),,,, for a unit of lift
coefficient and for solidities from //¢=1.0 to 1.5.
For lower solidities, only one point (the diamond)
was obtained from the configuration NACA
65-(18)-10, 8, =45, I/t=0.5 (ref. 16). It is natural
that this configuration led to a higher (An /1),y
than higher solidities, since zero solidity (//t=0)
can easily be estimated to lead to a still higher value
of approximately An;//=0.8.

Figure 2-33 also shows as open double lines the
maximum circumferential deviations (At#//)
between the mean streamline and the mean camber
line. This representation of the deviation is far less
advantageous than the normal deviation (An;/)),
since (Aty/)q forms two separate curves for
I/t=1.0 and //t=1.5 which are much steeper than
the (Any/0) 4 curve.

The distribution of the normal deviation An
along the vane is shown in figure 2-34 in terms of
the ratio An/An,y,,,, where in all cases An,,,, has
the value given by the heavy solid curve in figure
2-33. The shaded area in figure 2-34 covers the
range of deviation distributions of the standard
65-series cascades shown in figures 2-27(a) to (k).
The density of the shading represents qualitatively
the frequency of deviation; that is, most deviations
fall within the region bounded by two solid curves.
The width of the shaded region around maximum
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Figure 2-33. — Maximum deviation of camber line from
mean streamline.

deviation represents the scatter of Any,,, around the
solid curve shown in figure 2-33. The fact that this
scatter is quite small for most cascades investigated
(i.e., between the solid curves in fig. 2-34)
demonstrates the validity of applying equation
(2-83) to cascades of vanes, the accuracy being
indicated by this scatter.

Cascade and blade
geometry shown in fig. -
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o 2-27(n)

VAL

~
=
|
|
|
|

—
A4l
.

b - Standard 65-series vanes

: ’ %
B % ol ” <’ Z A
5 A% . 1 LR
/ &
i

9 8 7 6 .5 4 3 2 1 0
Distance from leading edge/Chord

Camber line deviation from
mean streamline, An/An .,
(=)

Figure 2-34. — Distribution of camber line deviation from mean
streamline for cascade of vanes NACA 65-(18A,14,) 10.
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Also shown in figure 2-34 is the chordwise
distribution of deviation for the trailing-edge-
loaded vane profiles shown in figures 2-27(1) to (n),
referred to the same An,,,, as shown by the heavy,
solid curve in figure 2-33. The maximum deviation
from the mean streamline for trailing-edge-loaded
profiles is 40 to 70 percent larger than that for the
standard 65-series profiles. Chapter 3 shows that
the trailing-edge-loaded profiles are of particular
importance for pump or compressor vane systems.

Assume that the deviations of the camber line
from the mean streamline shown in figures 2-33 and
2-34 not only apply to the cascade forms from
which these deviations were derived, but also are
useful approximations for the same deviations of
other cascade forms. Under this assumption the
foregoing empirical derivation establishes a general
relation between the vane pressure distribution and
the form of the vane profiles. This relation is, of
course, not as general as a relation based on
theoretical considerations, for example, the method
of Ackeret described in reference 10. The fore-
going empirical derivation has, on the other hand,
the advantage that it includes the effects of fluid
friction on the overall flow, which would be
difficult to achieve by theoretical means.

A relation between the vane pressure distribution
and the form of the vane profile, as derived here, is
reversible; that is, it can be used for the con-
struction of the vane shape from a given or assumed
vane pressure distribution. This process is described
in chapter 3.

2.5.6 Effects of Compressibility on Flow Relative to
Axial-Flow Vane Systems

The most important effects of compressibility on
the flow in turbomachines, outlined in section 2.4,
are applied in this section to the relative flow in
axial-flow vane systems. The intent is not to present
a complete description of this flow, but rather to
characterize only some major effects of com-
pressibility on this flow and to divide the flow
conditions roughly into those of completely
subsonic flow, completely supersonic flow, and
flow with transition from supersonic to subsonic.
As in section 2.5.5, only flow considerations
forming the basis for the design of such vane
systems (i.e., plane-flow cascades) are discussed,
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while the design problem itself is considered in
chapter 3 (sec. 3.2.7).

The principles of subsonic flow (outlined in sec.
2.4) are essentially one-dimensional, and these
principles alone are not sufficient to explain the
general characteristics of supersonic flow and those
of flow with transition from supersonic to subsonic.
In this respect, the following outline is based on the
methods established many years ago by Prandtl and
Busemann (see refs. 22 (ch. 1V), 4, S, and 14 (ch.
19)). The considerations which follow may not be
understandable without some knowledge of the
philosophy of Prandtl and Busemann in dealing
with the flow of compressible fluids.

The relation between the flow velocity and the
pressure and density of a compressible fluid is
described in section 2.4 on the basis of Bernoulli’s
flow-energy equation. As shown in section 2.5.1,
this equation applies also to the relative flow in
axial-flow vane systems, because the motion of the
vane system appears in the development of
cylindrical stream surfaces as a translatory or
nonaccelerated, motion. Such a motion of the
system has no influence on the laws of mechanics in
the system, such as Bernoulli’s equation. Therefore
the velocity of the relative flow determines the
specific volume and thereby the volume flow rate Q
anywhere else in the system on the basis of its total
enthalpy and the specific volume v at the system
inlet.

In accordance with the principles outlined in
section 2.5.5, the condition of continuity is used
primarily with respect to sections parallel to the
planes containing the leading and trailing edges of
the vane system (see fig. 2-29) and involving the
meridional velocity component V,,. As outlined in
section 2.4, the determination of V,, from the
geometry of the system requires a process of
iteration, which converges as long as V,, does not
approach sonic velocity. For given or assumed
velocities, no iteration is required to determine the
system geometry, unless the prescribed velocities
lead to zero or negative vane thickness.

To obtain a first approximation of the flow
entering and leaving an axial-flow vane system at
any one cylindrical stream surface, assume that the
width of the flow (b or Ab in fig. 2-29) normal to
the cylindrical stream surface is constant.
Furthermore assume that the thicknesses of the
vanes and of the boundary layers have only
negligible effects on the flow entering and leaving
the system. Under these assumptions, figure 2-35
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(a) Completely subsonic flow.
(b) Sonic flow.
(¢) Completely supersonic flow.
(d) Supersonic to subsonic flow entirely by normal
shock.
Figure 2-35. — Velocity diagrams for compressible flow in
axial-flow cascades of constant width.

shows the relative inlet and discharge velocity

vectors for four conditions:
(1) Subsonic inlet and discharge velocities rela-

tive to the system (cascade)

(2) Slightly supersonic inlet and slightly subsonic
discharge velocities, that is, essentially
sonic flow relative to the system

(3) Supersonic inlet and discharge velocities
relative to the system

(4) Supersonic inlet and subsonic discharge
velocities relative to the system, the change
in velocity being entirely due to a normal
shock in the system

Section 2.4 and references 22 and 14 show that (1)

in subsonic flow the specific volume and thereby the
volume flow rate change less than the flow velocity,
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(2) at sonic velocity the specific volume and volume
flow rate change proportionally to the flow velocity
and thus call for a constant cross section of the
flow, and (3) in supersonic flow the specific volume
and volume flow rate change faster than the flow
velocity. With these statements and the fact that the
axial velocity component V,, is proportional to the
specific volume v and Q, the flow configurations in
figures 2-35(a) to (c) become self-evident, con-
sidering that the velocity vectors shown represent
average velocities along the vane systera (in the
circumferential direction).

Furthermore it should be evident that flow across
a normal shock must be a flow of constant cross
section, since the shock front is so thin as to
prohibit any change in cross section of the flow
normal to the shock front. This explains the flow
configuration shown in figure 2-35(d), where any
growth in boundary-layer thickness has been
ignored.

Figure 2-35 indicates that subsonic cascade flow
of constant width is curved in the same direction as
but somewhat less than incompressible flow, sonic
cascade flow of constant width has no net curvature
(no change in direction from inlet to discharge), and
completely supersonic relative flow curves in the
opposite direction from incompressible flow. In the
third flow, the convex side of the vanes faces the
high-pressure side of the system. The fact that this
does not involve any contradiction is demonstrated
in figure 2-36 by means of the Prandtl-Meyer
method of characteristics (see refs. 22 and 14).

The principle of this method is illustrated in
figure 2-37. The flow changes direction only across
Mach lines, which are inclined against the flow by
the Mach angle «, for which sin a=a/V=the
reciprocal of the local Mach number. The law of
momentum dictates that there cannot be any change
in the velocity component paratlel to the Mach line.
The change in velocity and momentum normal to
the Mach line must be small, a change from a small
velocity difference below the local velocity of sound
a to an equally small velocity difference above the
velocity of sound. Thus the mean velocity normal to
the Mach line is the velocity of sound & as has been
evident by the Mach angle «. With the flow
direction and the changes in the flow direction
dictated by the direction of the flow boundary,
these definitions permit the construction of a flow
field from its boundaries by using the changes in the
direction of the boundary in small, finite steps (df,
in fig. 2-37).
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Flow diagram
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Figure 2-36. — Completely supersonic fiow through system of
parallel vanes.

Wave front
or Mach line~ -

Figure 2-37. — Supersonic velocity change across Mach line.

A repeated use of this principle leads to the
solution expressed by the velocity diagram
(hodograph) in figure 2-36. The local acoustic
velocities are correlated in the velocity diagram with
corresponding flow velocities by the letters E to K.
The numbers 1 to 5 denote the same velocities in the
flow field and in the velocity diagram. Consider,
for example, the flow field @) on the concave side
of the vane, which is opposite the flow field 8) on
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the convex side of the vane. The velocity diagram
gives the corresponding velocity vectors drawn to
their end points 3 and 3’ and shows that Vi>Vso,
Hence, according to Bernoulli’s equation and the
gas laws, py<pj-; that is, pressure on the convex
side of the vane (field &) )is higher than that on
the adjacent concave side (field (3)).

This discussion shows that the curvature of (thin)
vanes in a system with completely supersonic flow
does not constitute a contradiction regarding the
pressure differences across the vanes and the entire
system. Figure 2-36 actually established the
theoretical feasibility of completely supersonic
axial-flow compressors in the early days of this
development.

Generally supersonic inlet flow into a vane
system does not continue to be supersonic, but
changes to subsonic flow by way of a normal shock
within the system. However, the entire change in
velocity does not have to take place in the shock, as
assumed in connection with figure 2-35(d). First the
flow may be retarded supersonically, then the
normal shock takes place before the velocity drops
to sonic, and after the shock the flow may be
further retarded subsonically, but only slightly,
because the shock causes a very rapid increase in
boundary-layer thickness. The total flow resulting
from supersonic inlet flow and subsonic discharge
flow is, therefore, usually a successive combination
of the flows described diagrammatically in figures
2-35(c), (d), and (a).

As mentioned previously, the foregoing
considerations are based on the assumption of
constant width b or Ab (fig. 2-29) normal to the
flow section considered. This assumption may be
negated for two reasons:

(1) The physical walls of the space of revolution
in which this flow takes place may be changed so as
to influence the axiai velocity component Vi
substantially. For example, the normal or radial
width b might be changed proportionally to the
specific volume v in order to keep the meridional
(axial) velocity V,, constant. The shape of
cylindrical flow sections through the system would
then be (approximately) the same as that for an
incompressible fluid with the same flow coefficient
Vin,i/U and the same circumferential deflection
Awy/U. Additional corrections for compressibility
pertaining to the local flow conditions are
considered later.



(2) For radially deep vane systems, say for
D;,/D,<0.5, one may encounter quasi-transonic
flow conditions, supersonic relative inflow at the
tip, and subsonic relative inflow near the hub. In
such cases there may exist a radial interaction
between coaxial stream surfaces of different
diameters; that is, coaxial stream surfaces between
the supersonic, sonic, and subsonic flow regimes
may not be cylindrical. Early experiments with
axial-flow rotors of this type showed this
interaction to be favorable. Nevertheless it is
evident that departures from flow between coaxial,
cylindrical stream surfaces are of practical
importance, although these departures are often
difficult to predict.

Figure 2-35(a) indicates clearly that (at least in the
subsonic flow regime) the ratio of retardation
wy/w; diminishes for fixed inlet and discharge
angles 8, and B, with increasing reduction in the
fluid volume, that is, with diminishing ratio of the
axial velocities V), 2/ V), 1- Thus an increasing inlet
Mach number w;/a; leads to increasing flow
changes in a given vane system and to an increasing
rotor head coefficient 2gH,/U? until the limit of
flow retardation wy/w; is reached. Stall due to
increasing Mach number is probably caused to a
large extent, but not entirely, by this reduction in
the relative velocity ratio wo/wj.

A few words should be said about the local effect
of increasing Mach number of the inlet relative flow
wy/a, with particular reference to the previously
mentioned case where the normal (radial) width of
the flow is changed proportionally to the change in
specific volume v, so that the average axial velocity
component V,, as well as the inlet and discharge
flow angles 8; and B, can remain the same as for
incompressible flow.

As indicated previously, the curvature of the flow
of an incompressible fluid decreases rapidly with
increasing distance from the curved boundary (see,
e.g., fig. 2-8), since the spacing between the
streamlines is a minimum near a convex boundary
(because of maximum local velocity), is a maximum
near a concave boundary, and approaches an
average value away from the curved boundaries.
This change in streamline spacing diminishes with
increasing Mach number and approaches zero at
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sonic flow velocity (see, e.g., figs. 4.37 and 4.38 in
ref. 22). Thus the cross-stream extent of the effects
of boundary curvature into the flow field increases
with increasing Mach number and calls for dimin-
ished vane curvature and thickness at increased
Mach numbers, particularly near the leading vane
edges of a retarding vane system (compressor) and
near the trailing edges of an accelerating vane
system (turbine).

The natural conclusion from these facts must not
be driven to the extreme of an impossibility
(choking) at a Mach number of 1, since, contrary to
early expectations, axial-flow vane systems with
slender vane ends have been operated quite
successfully with sonic relative flow at their inlet
and/or discharge, probably because of three-
dimensional effects and the unending extent of
actual vane systems in the circumferential direction.
Nevertheless, for high Mach numbers of the relative
flow, one should observe rules similar to those
observed for flow with low cavitation numbers, that
is, for low minimum-vane-pressure coefficients:

_ , 2 w2 2
C, . . = P1=Pmin _ Winax WT _ Winax -1 (2-84)
pamin = w2 wi wi

This coefficient is directly related to the ratio of the
maximum velocity at the vane to the average inlet
(or discharge) relative velocity. For accelerating
vane systems, wj in equation (2-84) is, of course, 10
be replaced by ws.

Obviously the local w,,,, must be kept as low as
possible in order to reduce detrimental com-
pressibility or Mach number effects; that is,
Cpp,min = Whig/ W — 1 must be kept as close to zero
as possible in order to minimize the Mach number
effects in the extended field over which the local
increase in Mach number is noticeable in a flow
with high average Mach number. As mentioned
previously, the same considerations apply to
accelerating vane systems (turbines), where the
discharge velocity and pressure (subscript 2) take
the place of the inlet velocity and pressure in
retarding vane systems (subscript 1), because
wy>wy and pa<pj.

As indicated previously, in the high subsonic and
probably in the low supersonic flow regimes, design
practices useful in the field of low cavitation
numbers (high suction specific speeds) apply also to
vane systems with high Mach numbers of the
relative flow. This writer has found this reasoning
to be of considerable practical value, as long as
changes in the average specific volume and the
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resulting changes in the overall volume flow rate Q
are properly taken into account. Thus the fields of
hydrodynamic machinery design (with respect to
cavitation) and gas-dynamic machinery design (with
respect to Mach number effects) can clearly benefit
from each other. The pertinent vane design consid-
erations are presented in some detail in chapter 3.

2.5.7 Secondary Flow in Axial-Flow Vane Systems
Generated by Boundary-Layer Effects

In the beginning of section 2.5 it is stated that the
flow in axial-flow vane systems can be assumed to
proceed along coaxial, cylindrical stream surfaces.
However, there are several reasons why this
assumption is not correct in all parts of the flow.

Flow departing from the coaxial stream surfaces
of revolution prescribed by the meridional
velocities, here cylindrical surfaces, or from the
associated condition of continuity, is called sec-
ondary flow. The basic reason for such secondary
flow is usually the existence of vorticity in the flow,
that is, the existence of departures from the so-
called potential or ideal flow pattern. The principles
of flow with vorticity are outlined in section
2.6.3.1.

There are at least three reasons for the existence
of vorticity in the relative flow of turbomachinery
rotors:

(1) The relative flow in the rotor has in sections
normal to the axis of rotation a vorticity {,,j= — 2w,
where w is the absolute angular velocity of the
rotor. The existence of this vorticity is explained in
section 2.6.3.2, where vorticity is of major
importance, because at least a component of it is
effective in the meridional stream surfaces of
radial-flow rotors. However, in axial-flow rotors
this vorticity does not affect the flow in cylindrical
stream surfaces, because the vorticity vector T,y
has axial direction and, therefore, has no
component normal to the meridional stream
surfaces. For this reason, the frictionless, relative
flow along these surfaces can be treated as
irrotational, as stated in section 2.5.1.

Furthermore it is shown in appendix 2-A that this
vorticity does not generate secondary fluid motions,
because its effect is fully covered by the
circumferential component of the relative flow if
the absolute flow is irrotational. Therefore the
vorticity {,= — 2w does not have to be considered
in this section.

(2) Vane systems with radially nonuniform vane
circulation shed a trailing vorticity into the stream
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which is parallel to the relative flow. This vorticity,
along with its effect on secondary flow, is treated in
section 2.7 and is, therefore, not considered here.

(3) The vorticity which is considered in this
section is that generated by fluid friction on the
vane surfaces and on the cylindrical (or nearly
cylindrical) walls bounding the flow space of an
axial-flow machine. The effects of vane boundary
layers are described qualitatively according to
figure 2-38 (see also ch. XV of ref. 6).

The effects of the boundary layers on the
cylindrical casing and hub surfaces are outlined in
accordance with the work by Leroy Smith, pre-
sented in reference 23. They are caused by a
secondary fluid motion shown in figure 2-39, but
their most important effect is a flow along the
meridional stream surfaces at the spanwise ends of
the vanes.

As yet, quantitative predictions of the boundary-
layer effects described in this section have not
reached the simplicity necessary for preliminary
design. The qualitative descriptions given in the
following discussion are all that can be offered to
guide the design engineer.

Figure 2-38 represents diagrammatically the
secondary motion which is due to the rotor blade
boundary layers of axial-flow machines. In the
boundary layer, the relative velocity w; is smaller
than the relative velocity w, outside the boundary
layer. For blades staggered in the usual manner of
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=/
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Figure 2-38. — Radial motion of blade boundary layer in axial-
Sflow rotor.
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Figure 2-39. — Secondary end flow in axial-flow vane system.

axial-flow rotors, as shown in figure 2-38, the
circumferential component of absolute velocity Vy;
is larger in the boundary layer than outside the
boundary layer (V¢ ;1> Vy ). The fluid is dragged
along in the circumferential direction by the
rotating blades. With the radial pressure gradient
dictated by the circumferential component of the
absolute flow outside the boundary layer (Vy ),
the faster rotating fluid in the boundary layer is
centrifuged out, and the outward motion in the
boundary layer indicated in figure 2-38 is generated.

This radial outward motion in the boundary
layers of rotor blades causes a thickening of the
blade boundary layers in the tip section. The tip
section of the blade is, therefore, likely to stall
earlier than would be expected without the radial
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motion of the boundary layer. For the same reason,
the boundary layer of the root section of rotor
blades is thinner than would be expected without
this secondary motion. In fact, tip sections of rotor
blades often stall earlier than the root section,
although the root section usually has a higher lift
coefficient C; o and a more serious retardation
(lower ratio of w,/w)) than the tip section and,
therefore, should, according to figure 2-26, be more
likely to stall than the tip section. The practical
design consequence is that one must be much more
conservative with respect to separation or stall at
the tip section than at the root section of axial-flow
rotor blades. However, no general quantitative
information on this difference in stall charac-
teristics between root and tip sections of axial-flow
rotor blades is as yet available.

The first experimental observation known to this
writer of this effect of the radial motion of rotor
blade boundary layers was published in 1944 by
Weske in reference 24.

A corresponding but opposite (radially inward)
motion of the vane boundary layer exists in axial-
flow stator vane systems if the flow through the
system has a substantial circumferential com-
ponent. Then the radial pressure gradient is
generated by the circumferential component of the
(absolute) velocity outside the boundary layer.
Since the same velocity component inside the
boundary layer is lower, the boundary layer cannot
sustain the radial pressure gradient and is moved in
the radial inward direction. As a consequence, the
vane boundary layer is thickened at the root
sections of the stator vane system and, therefore,
tends more toward separation than it would if the
radial motion did not exist. For the root section of
stator systems, one should use separation criteria
more conservative than those suggested by figure
2-26. Inversely one can be slightly more aggressive
at the outer tip section of the stator, always under
the assumption that the flow through the stator
system has a substantial circumferential compo-
nent.

Rotor or stator vane systems with substantially
axial vane sections (see, e.g., figs. 2-27(b) and (c))
do not have significant radial motion of their vane
boundary layers. Therefore information on sep-
aration or stall limits presented in section 2.5.4,
particularly in figure 2-26, applies to these systems
without modification.
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There exists another type of secondary motion in
axial-flow vane systems which should be briefly
described, although its consideration in the design
of such vane systems is even more difficult than that
of radial boundary-layer motions along the blades.
This additional secondary motion is generated by
the boundary layers of the outer and inner cylin-
drical walls (shrouds). Together with the main flow,
these boundary layers are turned (or deflected) by
the vane system in the circumferential direction. It
is well known that this kind of motion of a
boundary layer (a layer of shear flow) leads to a
secondary fluid motion, as shown diagrammatically
in figure 2-39. This secondary motion can be
explained in several ways. It is essentially the same
motion as that existing in an ordinary pipe bend or
elbow in the form of a pair of vortices with their
axes in the direction of the main flow.

A simple, physical explanation of this secondary
flow is as follows: The curved main stream between
the curved vanes generates (by centrifugal forces) a
pressure gradient across the stream (i.e., a pressure
increase on the concave side and a pressure
reduction on the convex side of the vanes). This
pressure difference is determined by the flow
outside the boundary layers of the end walls.
Therefore the boundary-layer flow of reduced
velocities cannot sustain this pressure difference
without being curved more sharply than the main
flow and thus deflected toward the low-pressure
side of the channel. It is customary to describe this
secondary motion as overturning of the end wall
boundary layer. To satisfy the condition of
continuity for this secondary motion, one must
assume that the main flow outside the end wall
boundary layers is displaced slightly toward the
high-pressure (concave) wall of the channel, and
thus the curvature (deflection) of the main flow is
slightly reduced. In unshrouded pump rotors, this
secondary motion is reduced by friction on the wall
having the opposite motion relative to the system.
This secondary motion is increased by the same wall
friction effect in turbine rotors.

The same secondary motion has been explained
in a more exacting manner by Hawthorne (ref. 25)
on the basis of Helmholtz’ vortex law that vorticity
remains connected to the fluid. The vorticity
representing the velocity gradient in the boundary
layer is a vector normal to the boundary-layer flow
in front of the vane system and parallel to the end
walls. This vorticity vector remains connected to the
fluid particles and, therefore, does not continue to
be normal to the flow as the flow is turned by the
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vanes. If the vorticity vector is not normal to the
flow, it has necessarily a component in the direction
of the flow which describes the secondary motion.
Hawthorne demonstrated the validity of this rea-
soning experimentally. (It should be understood
that the first explanation given in this section and
the more rigorous explanation by Hawthorne are
not fundamentally different.)

Quantitative predictions about the effects of this
secondary motion obviously depend on the
thickness of the end wall boundary layer in relation
to some other significant linear dimension of the
system. Such a dimension may be the vane spacing
t, t—17, or the width of the system b. Furthermore
the boundary-layer thickness depends on the
configuration of the passages ahead of the vane
system in a somewhat complicated manner. The
probability that quantitative predictions can be
made for design purposes is, therefore, somewhat
remote and is not considered further in this section.

It is somewhat improbable that & would be
proportioned to b, for multistage units. Under the
natural assumption that greater end motion effects
occur with larger 6/b, the condition that é increases
with f leads to the result that the aspect ratio /¢
determines the effect of this end motion on
performance and design. The larger the aspect ratio
b/t, the smaller the end motion effect. However,
even for b/r <1, one usually ignores the end motion
effects because of the present lack of knowledge on
how this effect might be taken into account. It is
even possible that the overturning in the end region
might have a favorable effect on pump or
compressor rotors by increasing the work input in
the end region. If this reasoning were to some
degree correct, it would imply that the same
phenomenon should have an unfavorable effect on
turbines, where it would increase the flow energy
withdrawal from the end regions.

There is at least one other real flow effect causing
local secondary motions; it is the leakage stream
past the ends of unshrouded vanes. This stream
often produces at its downstream side a significant
vortex with its axis not quite parallel to the suction
side of the vane tip section. Again no simple way
has been suggested to predict the effect of this
vortex on the performance or on the design of the
vane system.

As mentioned previously, the secondary motions
can also be produced in a frictionless fluid by
spanwise nonuniform vane circulation, so that a
trailing vorticity is shed into the main stream in
accordance with Prandtl’s wing theory. This type of



secondary motion is discussed in section 2.7, which
includes a summary of all types of secondary
motions.

2.6 Theoretical Background of
Hydrodynamic Design of
Radial-Flow Turbomachinery

2.6.1 Introduction

The term radial-flow turbomachinery, as used in
this section, denotes turbomachinery in which the
flow through the rotor has a substantial radial
component. By this definition, the term is not
limited to purely radial-flow machines, like that
shown, for example, in figure 2-40, but also
includes conical-flow machines (called mixed-flow
machines), like that shown in figure 2-41, as well as
machines where the meridional flow in the rotor
changes from axial to more or less radial (see figs.
1-7 and 1-25).

Radial-flow rotors are hydrodynamicaily distinct
from axial-flow rotors because coaxial stream
surfaces composed of the meridional flow have
changing radii (distances from the axis of rotation)
and, therefore, the vane systems of such rotors have
changing circumferential velocity U(r) through the
rotor. Thus analysis of the relative flow through
such rotors must take account of the acceleration of
this flow as a consequence of the change in radius.
This acceleration exists regardless of the existence
or absence of changes in the angular velocity of the
system. Because of this acceleration, the relative
flow along the stream surfaces of the meridional
flow in radial- or mixed-flow rotors cannot be the
same as the flow relative to the same system at rest,
since an accelerated motion of the system changes

Figure 2-40. — Radial-flow centrifugal pump impeller.
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Figure 2-41. - Mixed-flow or conical-flow pump impeller.

the laws of mechanics for motions relative to the
system. This change in flow is expressed most
effectively by the so-called vorticity of the relative
flow in rotating, radial-flow systems, as discussed
in section 2.6.3.2.

It should be recognized that this situation is
different from that described in section 2.5 for the
flow within the cylindrical stream surfaces of an
axial-flow rotor, where the motion of the vane
system in the plane development of this surface is
not accelerated (at uniform angular velocity of the
rotor) and, therefore, follows the laws of mechanics
of a stationary system. This difference between
radial- and axial-flow vane systems is responsible
for the fact that the relative flow within a
cylindrical flow section through an axial-flow rotor
can be simulated by tests with a stationary vane
system (cascade tests), whereas the flow through
rotating, radial-flow vane systems cannot. It should
be noted that the flow in an axial-flow rotor as a
whole is not the same as that for a corresponding
stationary vane system, since the flow in different
cylindrical sections has quite different relations
from section to section for a rotating system than
for a stationary system.

The distinction outlined here between radial- and
axial-flow rotor vane systems is the only fun-
damental hydrodynamic difference between them.
However, there are other important distinctions of
a less fundamental nature that need to be con-
sidered in the theoretical background of radial-flow
turbomachinery design.

Usually radial- and mixed-flow vane systems
have a higher solidity (vane length-spacing ratio)
than axial-flow vane systems. Furthermore the
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aspect ratio (vane span-length ratio) is usually much
lower in radial-flow than in axial-flow machines.
Both distinctions lead to a greater influence of real-
flow effects on the flow in radial-flow systems than
in axial-flow systems. While this may increase the
skin friction and resulting secondary flow losses in
radial-flow machines, the useful action of a single,
radial-flow rotor is usually larger in relation to the
velocity head than that of a single-stage axial-flow
rotor. It is apparently for this reason that single-
stage, radial-flow machines have been developed to
efficiencies as high as (or higher than) those of
axial-flow machines.

Because of the increased importance of real-flow
effects, the design of radial-flow machines depends
more on empirical data than the design of axial-
flow machines. This dependence is also due to the
strongly three-dimensional flow in radial-flow
rotors, which involves transition from axial to
radial flow. Even under ideal flow conditions, this
three-dimensional flow problem is not near a
solution, nor are the complex real-flow effects
under such three-dimensional flow conditions.

The resulting design problems of radial- and
mixed-flow machines are discussed in chapter 4.
This section presents only that part of the
theoretical background that can be applied to the
design of radial-flow machines in a simple and
straightforward manner.

2.6.2 Flow and Design Principles of
Stationary, Radial-Flow Vane Systems

Consider the flow in a stationary, radial-flow
vane system, where the aforementioned problem
resulting from the rotation of the system does not
exist.

Stationary, radial-flow vane systems are usually
used as diffusers around the outside of pump or
compressor rotors {impellers) with radial outward
flow, or as nozzle rings or guide-vane systems
around the outside of turbine rotors with radial
inward flow. In pumps and compressors, the guide
vane system receives a flow with substantial angular
momentum from the inside (i.e., from the im-
peller), and in turbines, a flow with or without
angular momentum from the outside, which
discharges with strong angular momentum.

The flow is considered frictionless, incom-
pressible, and, as a first approximation, two-
dimensional and plane, that is, as proceeding
between two parallel walls normal to the axis of
rotation.
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Consider first a circumferentially and axially
uniform flow in such a space of revolution without
vanes. This flow may be regarded as the basic flow
which is to be altered by the action of the vanes.

For the radial component V, the condition of
continuity demands that the volume flow rate be

Q=2nrbV,=constant (2-85)

where b is the depth of the flow normal to the plane
of the flow (i.e., in the direction of the axis of
rotation) and is assumed to be constant. Hence

Q1 constant
TabrT
In the absence of any circumferential force acting
on the flow, this flow satisfies the law of constant
angular momentum:

(2-86)

COnilil‘LI (2-87)

V=

The direction of a streamline of this flow,
measured from the radial direction, is obviously

Vv
tan 8= ~Y = constant (2-88)
VI‘

which characterizes the streamline as a logarithmic
spiral (i.c., a spiral with constant inclination 8
against the radial direction). Its equation is

¢—¢;=tan @ In % (2-89)
where ¢ is the angular coordinate, r is the distance
from the center of the polar system, and ¢; and r,
are constants,

The rotating and radial outward flow between
two parallel walls, having theoretically this form of
streamlines, is called the flow of a vaneless diffuser
or, hydrodynamically, the flow of a vortex source,
and the corresponding inward flow that of a vortex
sink. Except for real-flow effects discussed later,
vanes are needed in such a system only if departures
from the natural flow of constant angular
momentum are desired.

The flow in stationary, radial-flow vane systems
is closely related to the flow through straight
systems of parallel vanes, which is discussed in
section 2.5 in connection with the flow through
axial-flow systems. In fact, one such flow can be
transformed into the other by a process of
conformal mapping, a transformation which
preserves geometric similarity in infinitely small
regions everywhere in the two pictures compared. If
the orthogonal (Cartesian) coordinates of the



straight system of parallel vanes are designated x in
the tangential direction and y in the axial direction
and ¢ and r are the circumferential and radial
coordinates of the radial-flow (polar-coordinate)
system, the conformal transformation of one
system into the other is described by

x=ap+b

(2-90)
y=alnr+c
It follows that
dx=ade

(2-91)
dy=a?

which show that the inclination of any line in one
system is equal to the inclination of the corre-
sponding line in the other system, since

dy dr
CAN 2-92
dx rde ( )
It can also be seen that an inclined, straight line in
the Cartesian system described by the equation

y=mx+n (2-93)

and having an inclination against the x-direction of

dy

- = 2-94
- (2-94)
is transformed into a logarithmic spiral with the
same inclination against the peripheral direction.
Substituting equations (2-90) into equation (2-93)
leads to

alnr+c=mag+mb+n

mb+n—c

= ¢ + constant (2-95)
ma

1
—Inr=¢+
m
which is indeed a logarithmic spiral with the
inclination 1/m against the radial direction or the
inclination m against the peripheral direction. (The
term inclination denotes here the tangent of the
angle of inclination.)
An orthogonal network of lines x =constant and
y =constant in the Cartesian system (straight system
of parallel vanes) is transformed by equations (2-90)
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into an orthogonal network of lines ¢ =constant
and r=constant in the polar (radial-flow) system.
Constant spacing Ax of the x=constant lines
results, according to equation (2-91), in constant
angular spacing Ag = Ax/a of the radial lines, and
constant spacing Ay of the y=constant lines results
in a radial spacing Ar of the circles r=constant,
which, according to equation (2-91), is proportional
to r, that is,
Ar= AZyr:conslant xr (2-96)
A system of parallel curved vanes in the Cartesian
system is transformed into an equivalent system of
vanes in the radial-flow system simply by giving
corresponding points along the vane contours the
same locations relative to the two networks of
orthogonal coordinate lines just derived. Figure
2-42 shows this transformation.

The laws of fluid mechanics state that a
conformal transformation of a plane, irrotational

Figure 2-42. — Conformal relation between stationary, radial-
Sflow vane system and straight cascade of vanes.
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flow (see appendix 2-A) of a frictionless, incom-
pressible fluid results in a flow obeying the same
laws. This means that a plane, irrotational flow
through the system of straight and parallel vanes is
transformed into an equally valid flow through the
radial flow vane systems, with all flow angles
measured from the respective coordinate lines being
the same in both systems. For example, with the
inlet flow angle (measured from the axial and radial
directions, respectively) the same in both systems,
the discharge flow angles are also the same in both
systems. The angular departures of the frictionless
flow from the one-dimensional approximations are
also the same, and all theoretical information
available on the frictionless, incompressible flow
through straight systems of parallel vanes (such as
Weinig’s results given in sec. 2.5) applies to the
conformal, stationary, radial-flow system. (Weinig’s
results apply directly to a radial-flow system of thin
vanes curved as logarithmic spirals, which may be
regarded as the zero-lift direction of other radial-
flow vane systems.)

The correspondence between the two flow
pictures compared has so far been described only by
the equality of flow angles relative to the two
coordinate systems. However, the velocities in the
two systems, while not equal, also have a very
simple relation to each other. If the condition of
continuity of an incompressible fluid in both
systems is to be satisfied, the product of the velocity
and any characteristic linear dimension of the
system must stay the same, because in a plane, two-
dimensional system a linear dimension is equivalent
to an area, since the dimension normal to the plane
is constant. Thus the velocities at corresponding
points of the two systems are related by the local,
linear scale ratio, which, according to equations
(2-92) and (2-91), is

rde dr r
dx dv a
This is the local radial flow system scale divided by
the scale of the straight system. When the velocities
in the straight system are designated Ver and
velocities at corresponding points of the radial
system V, 4, the velocity ratio becomes

(2-97)

Vea _ @ (2-98)
Var 1

The factor a is a constant scale ratio of the drawings
compared. For example, if one sets the scale ratio
equal to 1 at any particular radius r; of the radial
system, so that r\/a=1 or a=ry, then
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Vrd 4
Zrd o 1L (2-99)
Vir r

Velocities in the two systems are, therefore,
definitely related by magnitude as well as direction.

There exists an extremely important limitation
regarding the equivalence of flow pictures related
by a conformal transformation.

As observed previously, all statements regarding
conformal transformations of flow pictures pertain
only to frictionless fluids. Therefore the equiv-
alence between conformal flow pictures does not
apply to any phenomena related to fluid friction,
such as viscosity and turbulence. This can be
demonstrated best in connection with the most
important effect of fluid friction, namely,
separation or stall.

In section 2.5.4, separation is related to the
pressure rise along the low-pressure side of the
vanes. There is no obvious reason why this criterion
should not apply to stationary radial-flow vane
systems, and it is so applied throughout this com-
pendium. However, the specific results derived
from this principle change as a result of a
conformal transformation. This should be obvious
from the fact that the pressure rise from the point
of minimum pressure to the trailing end of the blade
changes according to the difference in the square of
the local scale ratio between these two points and
produces an additional change in velocity and
thereby an additional change in pressure.

A fairly exact consideration of this effect would
probably be too complex for design purposes and
hardly justified in view of the highly approximate
character of all calculations regarding separation.
However, a first approximation is very simple to
achieve.

The ratio of discharge to inlet velocity is of major
significance and is used as one of the principal
variables. Assume that this ratio is Vs’ Vi ser 1D
the straight system of parallel vanes. To simplify
the consideration without any real loss in
generality, one may assume that the local scale ratio
is unity at either r; or ry, say at ry, so that
Visir="V1,,q4- The ratio of velocity change in the
radial system is then

Vard _ Vasr Vara Visir
V],rd Vl,slr VZ,srr Vl,rd



From equation (2-99), V3 ,4/V2qr=r1/r;. With
Vistr=V1.ra» it follows that

V V r
Z,I'd — 2,SII‘ 7] (2_100)
Vive Visr N2
Assume, for example, that the radial-flow system
is an outward flow system, so that r;>r(; then

Va.rd < Vasir
Vl od Vl Str

which means that with retarded flow in the straight
system (V3 o,/ Vi gr<1) the retardation in the
radial outward flow system is more severe than that
in the straight system. For design purposes, one can
set a lower limit for V5 ,4/ V) ,4according to section
2.5.4 and figure 2-26 and then determine V; o,
/Vy s from equation (2-100) so that the limit of
Vara/ V1 rq is not violated. In other words, sep-
aration limits must be considered in connection
with the finally desired system and must be
computed by means of equation (2-100) to establish
the conformal system to be used to develop the final
system.

In addition to the effects of fluid friction, there
are other limitations on the use of conformal
mapping, such as compressibility and non-
uniformities in the axial width of the vane systems.
Such departures from the ideal conditions can be
handled by approximate corrections, which are
discussed in chapter 4 in connection with the
practical design of stationary, radial-flow vane
systems. The same is true for the design of such
systems by methods different from those of a
conformal transformation from a straight system of
parallel vanes.

2.6.3 Flow Through Rotating
Radial-Flow Vane Systems

2.6.3.1 Summary of laws of incompressible,
Srictionless flow. —This section merely states the
laws of incompressible, frictionless flow used in this
and later sections. The derivations of these laws are
presented in appendix 2-A, and the equation
numbers are those used in the appendix. Particular
attention is given to the laws of vorticity.

§2.6.2-2.6.3.1

From section 2-A.l, with ¥ and v denoting the
velocity components in the Cartesian coordinate
directions x and y, the condition of continuity is

du dv

iRy 2-A-1

ax 3y (2-A-1)
ind the condition of irrotational flow is

v du

o 2-A-16

ox dy 0 (¢ )

(The term irrotational is also used where the entire
flow rotates about one center at radially uniform
angular momentum, which satisfies eq. (2-A-16).)

Equations (2-A-1) and (2-A-16) together satisfy
the general momentum equations by Euler for any
plane, frictionless flow. Equation (2-A-16)
expresses the fact that a fluid particle dx,dy does
not rotate and that the circulation around this
particle is zero.

The general momentum equations by Euler can
also be satisfied by equation (2-A-1) and the
condition that for any fluid particle

di(x,y)
et A -A-19
g7 0 ¢ )
where
v 4
fxy)= i 5 (2-A-17)

and is called the vorticity of the flow.

Equation (2-A-19) expresses the second vortex
law by Helmholtz: The vorticity {=dv/dx —du/dy
of a particle of a frictionless fluid does not change
with time; that is, the vorticity remains connected to
the fluid. Consequently the vorticity is constant
along the streamlines of such a fluid in steady
motion.

The vorticity describes the rotation of a fluid
particle according to the relation

o= 3 506) (2-A-23)

where w is the average angular velocity of the fluid
particle.

The circulation around a fluid particle dx,dy is
dl' = {(x,y)dx dy (2-A-25)
that is, the circulation is equal to the vorticity of the
particle times its area (or volume).

The circulation along a finite, singly connected,

closed contour C is equal to the (algebraic) sum of
all circulations inside the contour:
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Lorouna ¢ = LT within ¢ (2-A-26)
As a consequence, the circulation about a finite

contour is

I' = {x, v)dx dy (2-A-27)

where the integrals cover the area inside the

contour.
The vorticity in polar coordinates is

HOE ? LM (2-A-28)

ar
where Vi, is the circumferential velocity compo-
nent. The vorticity is connected with the radial
change in the angular momentum, or moment of
momentum rVy,, as follows:

1.3(rVy)

2-A-2
r ar (2-A-29)

{(r,e)=

Therefore a curved, irrotational flow ({(re) =0) is
a flow with radijally constant angular momentum
(rVy=constant) about the center of curvature.

From section 2-A.2, with «, v, and w denoting
the velocity components in the directions of the
Cartesian coordinates x, y, and z, the condition of

continuity is

ou dv Ow
e AT 2-A-30
ax * ay * 0z ( )

The vorticity is a vector normal to the plane of
the vortex motion. Its three components are

dw Jv
=2 7 —pl
& 3 3z (in the y,z — plane)
du dw
- _ i - 2-A-31
&y 32 ax (in the z,x-plane) ( )
v du
= el T)y (in the x,y-plane)

The first vortex law by Helmholtz expresses the
condition of continuity of the vorticity vector:

¢y 9, 0t
ax Ty Tar 0

(2-A-32)

If vortex lines are defined as having everywhere
the direction of the local vorticity vector, the first
vortex law by Helmholiz (eq. (2-A-32)) can be
stated in the following form: vortex lines cannot
end in a frictionless fluid.
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The second vortex law by Helmholtz can be
stated for three-dimensional flow in the following
form: vortex lines and vorticity vectors remain
connected to the fluid and move and are stretched
(or shortened) with the fluid; that is,
G141=0A; (2-A-34)
(If the vortex lines are curved, the vorticity vectors
must be drawn at a sufficiently small scale to
coincide everywhere with the vortex lines.)

2.6.3.2 Vorticity of relative flow. — The flow
entering a rotor without any rotation of its absolute
flow (no prerotation) will rotate relative to the rotor
at an angular velocity oppositely equal to the
angular velocity w of the rotor. Thus the vorticity of
the flow entering and relative to the rotor is,
according to equation (2-A-23),
$rel o= — 2w (2-101)

In the more general case, where the fluid at the
inlet has a tangential component, the vorticity
relation can be expressed as
Sabs = Srer =20 (2-101a)
From this expression, it is evident that, whenever
the radial distribution of the inlet tangential
velocity is such that {,,,=0, which implies that it
must obey the law of constant angular momentum,
equation (2-101a) reduces to equation (2-101).

If the rotor is a mixed-flow rotor (fig. 2-41), the

vorticity of the incoming flow is determined by the
angular velocity of the rotor, as shown in the
development of a conical flow surface. This angular
velocity is
W, =w Sin ¢ (2-102)
where w is the true angular velocity of the conical-
flow rotor. The vorticity of the relative flow in the
conical stream surface is, therefore,
Sret,o = — 2w, = — 2w sin ¢ (2-103)
Evidently this vorticity goes to zero as the cone
angle ¢ goes to zero, that is, as the system
approaches axial flow. (Eq. (2-102) is most
convincingly derived from the peripheral velocity at
any point A: Uy, =rw=ryw,; therefore we=wr/ry,
=w sin ¢.)



For kinematic reasons (when flow is viewed from
a rotating platform), the axial component of the
vorticity of the relative flow must remain constant
as long as the absolute flow continues to be
irrotational. This vorticity cannot influence the
relative flow under the one-dimensional assumption
of an infinite number of frictionless vanes, since the
form of the relative flow is uniquely prescribed. The
vorticity of the relative flow, therefore, can
influence only the departures of this flow from the
one-dimensional assumption, that is, from the vane
shape. If the absolute flow between the vanes (of
finite spacing) is assumed to remain irrotational,
the relative flow between the vanes should have
vorticity with a constant axial component.

The vorticity of the relative flow in radial-flow
rotors complicates its theoretical analysis con-
siderably. As a result, only one approximate
solution of the relative flow problem has been used
extensively in the design of radial-flow rotors. This
solution is described in section 2.6.3.5 and is
compared with an exact solution of this flow
problem obtained by investigating the absolute flow
through radial-flow rotors. This comparison shows
an amazingly good agreement between the exact
solution and the approximate solution.

2.6.3.3 Static pressure, circulation, lift
coefficient, and separation. — Since the relative flow
in radial-flow rotors is not irrotational, the laws of
relative fluid motions are expected to be
substantially different from those of irrotational
flow through the same passages at rest. The first
relation to be investigated in this section is that
between the static pressure and the relative
velocities.

According to Euler’s turbomachinery equation,
the change in total head from inlet r| to discharge r;
of the rotor is

_WVy - Uy,

H
! &o

(2-104)

For a frictionless fluid, if all head losses are
neglected, the change in rotor head is also

vi-vi

2-105
28, ( )

Hr:hst,Z_hst,l +

where V denotes absolute fluid velocities, and A
denotes the static head Ay, =p/g,p. The change in
static head is, therefore,

UpVy-UiVys  V3-Wi

2-106
8o 2g, ( )

hsl,Z - hst,l =

§2.6.3.2-2.6.3.3

In the following derivations up to equation
(2-108), the subscript r denotes not only the strictly
radial direction, but also the radial direction in the
development of a conical flow section such as that
shown in figure 2-41. With this definition, the
meaning of these derivations is not restricted to
flow along planes normal to the axis of rotation,
but applies also to conical stream surfaces. Using
the substitutions

V2=V2 + V2

Vy=U~-wy

V2 =(U-wy)?=U2+wy—2Uwy
one obtains

golhg 2= hs 1) = U3 = Ugwy - Ul + Uywy

wi vz
——U—%——g@+Usz,z~ b

2
U3 wi V2

8olhst2— hsl, )]

w2 2
sz Ut -wip+wy — Vi + V2,

3 L (2-107)
Considering that
Wit Via=w3
Wit Vi =wi
one obtains
hst,2= st = VUi, wi-w; (2-108)

2g, 2g,

The term (U3 — U$)/2g,, is the difference in static
head between the radii 75 and rq in a body of fluid
rotating at uniform angular velocity w, since
U;=rwand U, =ryw. The term (w} — w%)/2g, is the
static head difference due to the change in relative
velocity from w; to w,, according to Bernoulli’s
equation.

The foregoing derivation is obviously based on
the assumption of complete axial symmetry. Thus
the results apply only to changes along the
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streamline of the relative flow, since changes across
the streamlines, specifically in the circumferential
direction, are eliminated by the assumption of axial
symmetry. Equation (2-108) and the subsequent
paragraph can, therefore, be expressed by the
following statement:

Differences in static head or pressure along any
streamline of the relative flow in radial-flow rotors
are obtained by adding the static head or pressure
difference calculated from the relative flow
according to Bernoulli’s equation to the static head
or pressure difference that would exist if the fluid
within the rotor were rotating at the angular
velocity of the rotor like a rigid body.

It should be noted that Bernoulli’s equation
cannot be valid along the streamlines of the
absolute flow through any turbomachine rotor
(radial or axial), because these streamlines are
intersected (generally) by the rotor vanes in motion,
that is, they are subject to moving forces and
thereby to a head addition or subtraction which is
on the average just equal to the rotor head H,.

The static-pressure or head changes, according to
equation (2-108), are partly due to the rotation of
the fluid and partly due to the (radial) vane forces.
A general derivation of these forces would be quite
complex. However, the validity of the foregoing
result can be demonstrated by cases where the radial
vane force is zero.

First, consider a rotor with straight radial vanes
(fig. 2-43). The flow is assumed to enter at such a
velocity that Vi =U; and the circumferential
component wy 1 =0. According to the one-
dimensional theory of the relative flow, wy, is zero
everywhere. To simplify the reasoning, assume
V,=constant. Then, according to equation (2-107),
the static head increase from r| to rp is

g~y = LY
st,2 st,1 22,

which is immediately seen to be valid since the

absolute peripheral velocity within the rotor is

indeed Vy=U=rw and conforms to solid body

rotation.

Second, consider flow in a fictitious vaneless
rotor. It has the same meridional profile as the first
rotor (fig. 2-43), but has no vanes, so that there are
no vane forces. Hence the absolute flow must obey
the law of constant angular momentum:
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Vu=Vu, Q (2-109)
Assume again that at radius r;

Vui=U

so that

Vy=U; - (2-110)

Since the pressure p is here a function of r only
(axial symmetry), the equation of simple radial
equilibrium appears in the form

dp V(zj
=P (2-111)
or

2 2 dr
51 dp=p;-p; =p§1 Vi

Substituting equation (2-110) gives
2dr  pl? r?
—py = 2| =2 -1 -
P2-pi pU%rISI 5 = <1 E (2-112)

This result, derived independently of the previous
derivations of equations (2-107) and (2-108), can be
compared with (2-107) and (2-108) to check their
validity. Evidently, according to equation (2-110),

WUZU— VU=U—U1-9

Hence

ww:ul(l—%)zo (2-113)
r

WU,ZZUZ“UIT;

2 U2r% 2 U I

wi = U+ 132 U, 17,

, r ry

WU,Z:L/% 1—2—'% +U%7% (2-114)

Substituting equations (2-113) and (2-114) and
V, 2=V, into equation (2-107) leads to



P2— P =pgo(hsl,2 - hst, 1)

(2-115)

which agrees with equation (2-112) and proves that,
in the absence of vane forces, considerations of
simple radial equilibrium give the same results as
equations (2-107) and (2-108), derived from Euler’s
turbomachinery equation.

Finally, consider velocity and pressure changes
across the relative flow in a rotating vane system
which would have no such velocity or pressure
changes if it were at rest. The velocity and pressure
changes in such a system are entirely due to the
rotation of the system.

Refer again to figure 2-43. The flow is again
assumed to enter at the circumferential velocity
Vy.1= Uy, so that wyy 1 =0. The condition wy=0or
Vy=U is assumed to be satisfied throughout the
system.

The change in angular momentum for an
infinitesimal radial step dr is equated to the moment
applied to the flow by the vane pressure difference

Figure 2-43. — Radial-flow rotor with straight radial vanes.
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dM=Ap rb dr=pQ, [(U+ E:,Tlrjd!‘) (r+dr)— U’]

(2-116)
where Q is the rate of volume flow per blade.
With Vy=U=rw, evidently oU/dr=w. Fur-
thermore Q| =r A bV,. Hence
dM=Ap rb dr=pr Ap bV (Ur+ wr dr+ Udr—Ur)
Ap rdr=pr A¢ V2U dr
and thus
Ap=2p Ap UV,=2p Ap rwV, 2-117)

(which could be derived also from the Coriolis
forces).
The circulation over the element by the vorticity

“of the relative flow {,; is obtained by equating the

differential form of the equation (2-31) to equation
(2-A-25):

dl oy =rére Ap dr=2V, dr (2-118)
where V. is the velocity generated by the vorticity
{re- (Since radially adjacent elements can be
assumed to have the same flow within the limits of
the equality of these flow fields, there is no
significant contribution to dT from the flow along
the outer and inner sides of the element. An analysis
of this problem has shown that any contributions of
these sides to dT' must be of a lower order of
magnitude than that expressed by eq. (2-119). This
argument does not hold true in the radial end
portions of the passage and is further investigated
in sec. 2.6.3.5.)

By equation (2-118) and {,pj= — 2w,

A
Ver="rirel 7"’ =—rAgw (2-119)

Accordingly equation (2-117) can be rewritten so
that the vane pressure difference is

Ap=—20V,V, (2-120)

This vane pressure difference can also be
computed by using the circulation 4T over the vane
element of length dr. According to the law by Kutta
and Joukowski (see eq. 2-32) and equation (2-31),
the force on the blade element of the length dr is

131



§2.6.3.3

dfy=pV,dly=pV, 2dr Vr ,=Ap dr

or

Ap=2pV,Vp (2-121)
where b, is the velocity induced by the local vane
circulation.

Note that in figure 2-43 the circulation dT,,
about the fluid element (» Ay dr) has the opposite
direction from the circulation dT', about the vane
element dr; this difference accounts for the
difference in signs between equations (2-120) and
(2-121). These two equations and figure 2-43 show
that V¢, and Vr , are actually identical.

Finally, one must consider the departure AVp
from the uniform radial velocity V, which would
exist if it were related by Bernoulli’s equation to the
vane pressure difference Ap determined by the
change in angular momentum over the radial
distance dr. With p denoting the mean pressure,
Bernoulli’s equation takes the form

A A 0
P+ ?” +§(V,—AVB)2=p— 7’) + §(Vr+AVB)2

or

Ap= g(V;mWBnV,AVB— V2= AV3+2V, AVp)

Hence

Ap=2pV, AVpg (2-122)

Equations (2-117) and (2-119) to (2-122) show
that, in a rotating system of straight, radial vanes,
the departures V., from the average radial velocity
V,due to the vorticity {,,;= — 2w are identical to the
departures Vr , from the average radial velocity
caused by the local vane circulation according to the
law by Kutta and Joukowski. Both departures Vir
and b , are related to the vane pressure difference
Ap (as determined from the radial change in angular
momentum) by Bernoulli’s equation. In a rotating
system of straight, radial vanes, Bernoulli’s
equation, therefore, holds for the changes in
relative (radial) velocities across the relative (radial)
flow.
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The vanc circulation in rotating, radial-flow vane
systems 1s determined from the absolute fluid
velocities in the same manner as for axial-flow vane
systems. As can be seen from figure 2-44, the
contributions of the contour portions BC and DA
to the circulation about the contour ABCD cancel
out, since these lines can be chosen to be in identical
positions relative to the blades. All that needs to be
assumed is perfect periodicity of the flow picture
from blade 10 blade. (It is also assumed that ra and
ry as defined by fig. 2-44 are far enough from the
vane system 1o justify the use of average values of
Vi2and Vy, y at these radii.) As a consequence, the
vane circulation I';, is
FUZ VU,zr?_ A¢~ VU,lrl A(p (2-123)
where Ay is the angular spacing between the vanes.

The lift coefficient is derived by the same
principle as for axial-flow vane systems (see sec.
2.5.2), by equating the vane force per unit span

2
Fi=Cp o521

(2-124)
(where C;  is the lift coefficient) to the same vane
force according to the law by Kutta and Joukowski:
Fi=pwgl', (2-125)

The mean velocity wy, of the flow relative to the
blades of a rotating, radial-flow vane system is
defined by equations (2-124) and (2-125). A
separate investigation would be necessary to

-
1

Figure 2-44. — Circulation about vane of radial-flow rotor.
A =27/N=constant.



determine how wg is related to the relative
velocities at the inlet and discharge of the system. In
the absence of such an investigation, it may be
assumed that

_+_
Weo = Wit W2 (2-126)
2
Equations (2-124) and (2-125) obviously lead to
the same relation as for single airfoils and for
straight systems of parallel vanes:

_or,
Clw=4 (2-127)
With equation (2-123),
V -V
Crow=2 AV,_UJrZ/U,ﬂ (2-128)

Wool

When the peripheral vane spacing at the radii 7
and ry

ly=ry Ap
(2-129)

ty=r1 Ag

is introduced, equation (2-128) may be written in
the form

Viupa b Vuin
— Y L | L,
Cre We | Vi,

which applies primarily to pumps or Compressors
where Vyara>Vyrn the subscript 2 applying to
the rotor discharge and the subscript 1 to its inlet.

For turbines, where Vi r1>Vy,or2, one avoids
negative values by defining the vane circulation by

(2-130)

T,=Vyr e —Vyr Ay (2-131)
so that

V -V
Craw=2 A¢_¢£Lr_1__u»27r2 (2-132)

Wool

which leads to
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Lo [ Vuer
CLa=27" [(1 e (2-133)

For zero angular momentum of the flow on the
low-head side of the rotor (V¢ ;=0 for pumps;
Vy2=0 for turbines), equations (2-130) and (2-133)
assume the same form as equation (2-54), derived in
section 2.5 for axial-flow vane systems.

In the field of axial-flow turbomachines, the lift
coefficient can be used to obtain a first
approximation of the vane shape, and in
combination with figure 2-26, it constitutes a
criterion for separation or stall.

The relation between the lift coefficient and the
form of the vane (including its angle of attack)
stems primarily from the comparison between the
vanes of axial-flow turbomachines and single
airfoils in an infinitely extended flow. This
comparison is not directly applicable to design
problems of radial-flow rotors, partly because of
the vorticity of the relative flow and partly because
of the predominant use of vane systems of high
solidity. It is indicated in section 2.5 and becomes
more apparent in chapter 3 that even the design of
axial-flow vanes begins to differ very strongly from
that of single airfoils whenever the solidity of the
system approaches or exceeds unity. Therefore, it is
safe to conclude that the lift coefficient generally
cannot be related effectively to the shape of vanes in
rotating, radial-flow (and some axial-flow) systems.
Such a relation is, therefore, not further explored in
this compendium.

The situation is somewhat different with respect
to separation or stall. While it is true that the flow
conditions in radial-flow rotors differ markedly
from those in axial-flow vane systems, the lift
coefficient, nevertheless, describes for both the
ratio of the average vane pressure difference to the
velocity pressure of the mean velocity relative to the
blades. Since this velocity pressure (or energy) must
be expected to be of major importance in
negotiating the vane pressure variations without
separation, it is reasonable to assume that the vane
lift coefficient plays with respect to separation in
radial-flow rotors a part similar to that in axial-flow
machines, although this comparison is as yet purely
qualitative.

Recall that, in addition to the lift coefficient, the
retardation (or acceleration) of the general relative
flow (the ratio wy/wy, in fig. 2-26) has an important
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influence on separation in axial-flow vane systems.
Pressure changes (gradients) of the mean relative
flow should be expected to have a similar effect in
radial-flow systems.

Many years ago von Karman called this writer’s
attention to the fact that pressure differences
resulting from a centrifugal force field cannot have
any effect on separation any more than a
gravitational field can have such an influence,
because the body force that produces this type of
pressure gradient is identical to the body force
acting on the fluid particles, and thus the effect is
cancelled.

The static-pressure gradients in radial-flow rotors
are described previously as being partly due to a
centrifugal force field and partly due to changes in
the relative flow velocities. With some reservations,
one can say that only those pressures gradients that
are due to changes in relative velocities should be
taken into account with respect to separation in
radial-flow rotors. This means that only the second
term in equation (2-108)

2 _ 2
PV L i (1 - :7%)

(2-134)
2g, 2g,

contributes to the danger of separation. Accord-
ingly the relative velocity ratio wy/w,, which is
important for axial-flow vane systems, has con-
ceivably the same significance for radial-flow
rotors. (There is no reason why it should not be
used in the same manner for stationary, radial-flow
vane systems; it can be written with respect to the
absolute velocities in the forms (V5 - V3)/2g,, and
V,/V,, as can be seen from eq. (2-106) with
U =U,=0.)

Since the vane lift coefficient has with regard (0
separation at least qualitatively the same
significance for radial- and axial-flow rotors, it can
be concluded that in the absence of better
information, figure 2-26 can be used also for radial-
flow rotors (and radial-flow stator vane systems)
with the understanding that the limiting values of
various separation coefficients may be different for
radial- and axial-flow systems, since no test points
are available for radial-flow systems. Our relative
ignorance of the flow in rotating radial-flow
passages and certain theoretical and experimental
results by Johnston, which are discussed briefly in
section 2.6.3.8, strongly suggest that more
conservative limits of C; and wy/w; be used for
radial-flow rotors than for axial-flow vanc systems.
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On the other hand, radial-flow rotors with axial
inlets and straight radial vanes in their discharge
portions have been operated with reasonable
success at ratios of relative flow retardation wy/w,
far below the lower limits indicated by figure 2-26.
It is as yet not clear whether such rotors operate
with a more or less separated form of flow. Overall
pump or compressor efficiencies obtainable with
such rotors may exceed 80 percent, bul they have
not yet reached the 90-percent level achieved
reliably with radial-flow pumps with backward-
bent rotor vanes, which permit the flow (o stay
within the wy/w) limits indicated by figure 2-26.

2.6.3.4 Results of exact theoretical analysis of
absolute frictionless flow. —The inward flow
through radial-flow vanc systems, usually used in
hydraulic turbines, is fairly well described by the
one-dimensional theory, partly because the relative
flow in such systems is mostly accelerated and
parily because departures of the discharging flow
from the direction of the vanes are effective at the
minimum diameter of the system, so that their
effect is reduced.

The opposite is true for the outward flow in
radial-flow systems used with centrifugal pumps
and compressors. The departures from the one-
dimensional theory in weli-designed radial-flow
pump rotors as measured by the change in angular
momentum  (the rotor head H,) are about 20
percent.

Figure 2-45 shows the inlet and discharge velocity
diagrams of a standard centrifugal pump rotor with

Direction of

Direction vane or wy 7

of vane y

Figure 2-45. — Velocity diagrams of radial-flow pump rotor.
Flow angles o and 3 are measured from peripheral direction,
in agreement with Busemann’s paper (ref. 30).



backward-bent vanes. The discharge diagram is
shown in relation Lo the discharge direction of the
vanes and to a fictitious relative discharge velocity
w2 The magnitude of this velocity is calculated by
the condition of continuity from the volume flow
rale Q and the cross-sectional area between, and
normal to, the vanes at their discharge ends (d, as
shown in fig. 2-46, times the average axial width of
the impeller over the vane distance d). The
fictitious velocity diagram obtained on this basis
contains a fictitious absolute discharge velocity with
a peripheral component V;J_z, which may be used in
Euler’s turbomachinery equation in the form

H Vi, U=V U
p— H,: CH U2 2 U1
Mh &o

(2-135)

(It should be understood that the inlet velocity Vy
is not part of the rotor problem but is determined
by similar considerations from the inlet passages or
guide vanes ahead of the rotor.)

As indicated previously, the head correction
factor Cyyis equal to or slightly less than 0.8 if w5 is
determined from the discharge cross section
between the vanes. This method of approximating
the relative flow one dimensionally from the vane
shape has the advantage of taking a fair portion of
the vane shape into account and thus avoids the
difficulty of defining a representative discharge
vane angle for vanes with finite thickness and
radially varying vanc angle.

Figure 2-46. — Logarithmic spiral vanes with notation of figure
2-47.
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Because of the substantial departures of Cyy from
unity, the two-dimensional outward flow through
radial-flow rotors has received extensive attention
in Europe during the second and third decades of
this century in the form of a number of theoretical
investigations (see refs. 26 to 30). The following
presentation is based on the last of these
investigations (ref. 30, by Busemann), because its
results are given in a form readily applicable to the
design of turbomachinery.

All investigations described in the references are
based on the theory of plane, two-dimensional
motions of an incompressible, frictionless tluid.
Because of the vorticity of the relative flow through
radial-flow rotors, the absolute flow is investigated.

In the investigation by Busemann (ref. 30), the
vane system is approximated by a finite number of
logarithmic spirals grouped symmetrically around
the center of the system. All vanes of the system ar¢
transformed conformally into a single circle. The
center of the system appears as a vortex source close
to the circle representing the vanes, and infinity is
transformed into infinity.

The flow through the system is divided into three
parts:

(1) Through flow, that is, the absolute flow

through the system at rest

(2) Displacement flow, that is, the absolute fluid

motion produced by the rotation of the
vane system at zero through flow

(3) Circulation flow, the flow about the vanes

whereby the Kutia condition of smooth
flow at the trailing vane edges is satisfied

If the circulation flow is divided into two parts,
one satisfying the Kutta condition for the through
flow alone and the other the condition for the
displacement flow alone, the following statements
can be made:

(1) The displacement flow with its part of the
circulation describes the ideal-flow characteristics,
particularly the ideal head H, at zero through flow
(shutoff conditions). According to the one-
dimensional theory, Vi 2=U; and Vg1 =0 under
these conditions, so that the shutoff rotor head is

%
8o
where the head subscript o refers to @ =0, and the
subscript 1 refers to the one-dimensional theory.
Figure 2-47 shows the results by Busemann
regarding the shutoff rotor head H, under ideal,

two-dimensional flow conditions by the ratio s, of
this head to its one-dimensional approximation.

(2-136)

Ha,l:
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Combining equation (2-136) and the results in
figure 2-47 gives

U2
Hn:hog_z

0

(2-137)

(2) The through flow, including its part of the
circulation, is the flow through the vane system at
rest and thereby accounts for the departures of the
ideal-flow characteristics, particularly the head,
from the ideal shutoff (zero-flow) conditions. By
this definition, the velocities of this flow are
obviously proportional to the volume flow rate
through the machine.

From his theoretical work, Busemann was able 1o
conclude from this situation that, at constant
rotational speed, the relation between the ideal
rotor head H, and the flow rate Q can be
represented by a straight line. This conclusion can
be made plausible on the basis of Euler’s
turbomachinery equation (2-19) in the following
manner. Evidently

Via=Us—wy

Therefore

H,~ UaUy = wy,0) - UiV,
8o

_ U3 Wawya+ UiV
&o

(2-138)

According to figure 2-45,
W2 = W) Cos 3>

Vi i=V|cos a

so that

U3 - (Uswy cos By + Uy V) cos ay)
8o

H, = (2-139)

where 8; and « are, in the notation of Busemann'’s
paper, the flow angles measured from the
circumferential direction.

From the condition of continuity, one can
conclude that wjy=constant;x Q and V),
=constant; x Q, since V| is controlled by a
stationary guide-vane system in front of and inside
the rotor inlet. Hence

o U3 - Q[Us(constanty x cos 8,) + Uj(constant | x cos ;)]
Pk s - d

8o

This equation demonsirates the aforementioned
straight-line relation between H, and Q, since there
1s no reason to assume any variation in the flow
angles «y and $8; under ideal flow conditions.

For pump rotors with backward-bent vanes, that
is, with the relative flow discharging backward, so
that Vy 2<U,, the ideal head-capacity (H, Q)
curve is generally a straight line falling off in the
direction of increasing capacity Q. With radial
discharge relative (o the rotor (Vya=U;) and
Vi 1=0, the ideal head-capacity curve is a
horizontal straight line. With forward-bent vanes
(Vy,2>U,), this curve is a straight line rising with
increasing capacity. These results are nearly self-
evident from the one-dimensional application of
Euler’s turbomachinery equation, but according to
Busemann’s analysis, are also valid for the two-
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dimensional flow of an ideal (frictionless and
incompressible) fluid through pump rotors.

Busemann’s A, curves shown in figure 2-47
correspond to the point of intersection between the
H,,Q line and the Q=0 axis for the one-
dimensional approximation of this line. The same
results also show that the two-dimensional line is
approximately parallel to its one-dimensional
approximation in the range where the hy, ri/rs
curves are straight and horizontal, that is, where the
discharge of a radial-flow pump rotor is not
influenced by the inlet to the system. Thus in this
range the head reduction
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2
H] -H=( _hu)gz
8o
is approximately constant at varying flow rates Q,
where H| is the ideal shutoff head determined by
the one-dimensional approximation.

In order to illustrate the physical meaning of the
Busemann curves, this writer has drawn in figure
2-47 a few additional curves describing the solidity
(or ratio of overlapping) of the vanes in the system.
Here ¢, is the angular (or circumferential) extent of
a vane (see fig. 2-46), and z is the number of vanes.
Evidently ¢,=2#/z denotes the solidity where the
end of one vane is radially in line with the beginning
of the next vane. The vane angle 8 is measured from
the circumferential direction (in contrast to the
general practice of this compendium). Since the ¢,
criterion of solidity does not apply to straight radial
vanes, curves for the vane length /=2#ry/z are also

(2-141)
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shown; this equation corresponds to the conven-
tional definition of a solidity of 1 for the vane
spacing at the outer periphery.

It is evident from figure 2-47 that the h, curves
depart from their straight, horizontal trend
approximately when the solidity by ecither definition
drops below 1. In other words, the inlet to the vane
system ceases to have an overall effect on the
discharging flow when the solidity of the system
substantially exceeds 1. It is this range of over-
lapping vanes where the curves in figure 2-47 have
their most definite practical meaning. This meaning
is further discussed in the next section.

2.6.3.5 Semiempirical corrections of discharge
velocity diagram. — Besides the exact solution of the
ideal-flow problem of centrifugal pump impellers
discussed in the preceding section, there exist a
number of semiempirical solutions of the same
problem that attempt to correct the one-dimen-
sional discharge velocity diagram on some rational
basis with support where possible by comparison
with test results.

In this section, only one method of this type, that
by Stodola (described at the end of his famous book
on steam and gas turbines, ref. 2), is discussed in
some detail, since it is by far the most rational and
at the same time the simplest method of correction.
It is compared with the exact solution by Busemann
and is thereby found to be quite good within the
limits of ideal (frictionless) flow considerations.

Another correction method of this genceral type
was suggested by Pfleiderer in his well-known book
on centrifugal pumps (ref. 21). It is shown here by a
qualitative comparison with the resulis by
Busemann that Pfleiderer’s method does not apply
in the important field of impellers with strongly
overlapping vanes, in which its author intended it to
be used.

The method by Stodola is based on the principal
difference between radial- and axial-flow rotors,
namely, the vorticity of the relative flow. Stodola
actually investigated by the so-called soap film
method the flow within the vane channel of radial-
flow compressor impellers generated by the uni-
formly distributed vorticity of the relative flow.
However, the practical value of the method stems
from the ingenious, very simple way in which
Stodola derived from this vorticity a correction of
the one-dimensional discharge velocity diagram:
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In figures 2-46 and 2-48, a circle (circular
cylinder) is inscribed into the discharge opening of
the vane channel. Its diameter d, is the normal
distance between two adjacent vanes, measured
from the discharge edge of the outer vane forming
the channel. According to section 2.6.3.2, this
cylinder may be considered as rotating relative to
the channel at an angular velocity « which is
oppositely equal to the angular velocity of the
rotor. The relative peripheral velocity of this
cylinder wgy4 is the Stodola correction of the one-
dimensional discharge velocity diagram

WS4 =w% (2-142)
which is assumed to exist at the outer periphery of
the rotor in the circumferential direction opposite
U,. From previous statements, it is immediately
evident that

d;

WSA=U2—2

(2-143)

which illustrates the simplicity of this correction.

The extreme simplicity of the foregoing
determination of the Stodola correction (highly
desirable for design purposes), of course, raises the
question of the accuracy of this correction. This
question can be answered by comparing the Stodola

-V TS

Figure 2-48. — Stodola correction of flow leaving centrifugal
pump rotor.
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correction with the exact results obtained by
Busemann (sec. 2.6.3.4).

The Stodola correction velocity wg, is evidently
independent of the rate of flow through the rotor.
To permit easy comparison with Busemann’s results
as presented in figure 2-47, it is, therefore, desirable
to apply the Stodola correction to the shutoff
conditions (Q =0). With the same notation as used
in section 2.6.3.4 and with reference to Euler’s
turbomachinery equation (with V¢, =0 at Q=0),
one finds the shutoff head H,, to be

_ W - wsa)Us

H
¢ 8o

(2-144)

Hence, with the one-dimensional head H,,,

hoq= 0 = 227 Wsa | Wsa (2-145)
: 2

where the introduction of the symbol A4 suggests
comparison with the Busemann head ratio A,,.
Substitution of equation (2-143) into (2-145)
yields
d,
—1- 12
fisa D,

(2-146)

which may be compared with the 4, values in figure
2-47.

The determination of the discharge opening ratio
d,/D; constitutes something of a problem. The
general shape of the logarithmic-spiral vanes is
determined from the equation of a logarithmic
spiral in the form

In % =(lan S) ¢z —¢y)

(2-147)
where ¢ is the angle about the center of the system
(see figs. 2-44 and 2-46), and (3 is the angle of the
spiral against the circumferential direction as used
by Busemann.

For small values of #3 (flat spirals), the ratio
d»/ D> was approximated by the equation (see fig.
2-49)
dy=(ry—ry)cos B (2-148)
where rp — r, is calculated from equation (2-147) for
w2 —¢,=27/N, with N being the number of vanes.



Figure 2-49. — Vane end configuration for flat vanes.

For §>10°, the diamecter of the circle (cylinder)
inscribed in the discharge area of the vane system
(radial-outward-flow system) is obtained graph-
ically from the logarithmic spirals drawn according
to equation (2-147) and the law of constant vane
angle 3. The results of this derivation are shown in
figure 2-50.

The agreement indicated by figure 2-50 between
the simple approximation by Stodola and the exact
theory by Busemann is amazing. Within the
practical range of the vane angle 3 and the number
of vanes z or N, this agreement is within =6
percent, far better than this writer would have
expected. (These results correct an earlier statement
by the same writer in sec. 53 (fig. 127) of ref. 14.)
The simple Stodola correction may, therefore, be
used under most practical conditions in place of the
Busemann curves within the range that these curves
are straight and horizontal, that is, for vane systems
with solidities significantly larger than 1.

From the comparison with the Stodola correc-
tion, one can draw the conclusion that, for
frictionless flow, the departures of the flow (at the
discharge of pump rotors) from the one-
dimensional theory at solidities substantially greater
than 1 are primarily due to the vorticity of the
relative flow. This conclusion is now used to
evaluate the correction by Pfleiderer of the one-
dimensional flow through radial-flow vane systems.

Pfleiderer uses the pressure difference between
the two vane sides 1o derive a departure of the
relative flow at the discharge of pump vane systems
from the one-dimensional flow pattern. However,
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Figure 2-50. — Head ratios at zero flow with Stodola correction
divided by same ratio according to exact solution by
Busemann; ratio h, denotes ideal, two-dimensional head
divided by head given by one-dimensional theory.

the foregoing conclusion indicates that the vane
pressure difference is not the principal cause for
departures of the discharging flow from the one-
dimensional flow pattern in radial-flow vane
systems of high solidity. This argument also agrees
with the conclusions drawn in section 2.5 on axial-
flow pumps, because the Pfleiderer correction
should apply to axial-flow as well as radial-flow
pumps. For axial-flow vane systems, the departure
of the relative flow from the mean direction of the
vane (the zero-lift direction) is negligibly small if the
solidity of the vane system //¢ substantially exceeds
1. This writer, therefore, does not recommend the
application of the Pfleiderer correction, or of any
other vane-pressure-based correction, to radial-
flow vane systems with solidities substantially larger
than 1. This contention is valid only as long as the
one-dimensional theory and velocity diagrams are
not based on the direction of the vane ends alone
but on the average direction of a substantial part of
the discharge portions of the vanes. A practical
definition of this average vane direction is
mentioned in section 2.6.3.4 and is further
discussed in chapter 4.
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2.6.3.6 Effect of fluid friction on flow leaving
vane systems of high solidity. - This  section
discusses the effect of fluid friction on the
performance of hydrodynamic rotors over and
above the simple reduction in the net head due 1o
skin friction or duct losses. Accordingly, Euler’s
turbomachinery equation is used, and the
discussion is limited to the effects of fluid friction
on the change in angular momentum in the rotor.

Evidently one is concerned here with the effect of

fluid friction on the circumferential velocity
components ot the tlow leaving the rotor.

The circumferential component of the flow
leaving the rotor is not likely to be affected
significantly by friction-induced variations in the
relative flow if the discharge ends of the vanes form
radial and axial planes as shown, for example, in
the lower part of figure 1-46, so that the discharging
relative flow is very nearly radial. Therefore this
section is concerned primarily with rotors dis-
charging the fluid with an important cir-
cumferential component of the relative flow. While
this component may have the same direction as the
peripheral velocity of the rotor or the opposite
direction, in turbopumps and related machinery, it
usually has the opposite direction, associated with
backward-bent vanes, as shown in figure 2-44.
Hence this section deals primarily with this
standard configuration of centritugal pumps, but
the principles described apply also to other
arrangements as long as the discharging relative
flow has a significant circumterential component.

The same considerations also apply in principle
to the flow entering the rotor from a guide-vanc
system in tront of the inlet to the rotor, which is
particularly important for turbines. However, for
the present, the flow entering the rotor, particularly
its angular momentum under the influence of fluid
friction, is considered as given and known.

The necessity of considering the effects of fluid
friction on the performance of a rotor, particularly
on the rotor head H,, stems from the fact that the
ideal flow considerations given in sections 2.6.3.4
and 2.6.3.5 have one result that is in conflict with
practical experience, namely, that the rotor head
should increase continuously with increasing
number of vanes and approach asymptotically the
head predicted for an infinite number of vanes.
This is known to be not true for pump rotors with
backward-bent vanes, not even for the rotor head
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H,, which should not be affected by the increasing
skin-friction losses.

It is assumed in the tollowing that fluid friction
does not affect the direction of the relative flow
leaving the rotor. This assumption simplifies the
problem of tinding the effect of nonumiformities in
the distribution of the relative velocities leaving the
rotor. It is reasonable (o assume thar such
nonumiformities in the magnitude of the relative
velocities are the primary manitestation of fluid
friction in the rotor, unless the fluid friction effects
are very major, as in the case ol separation.

Under this assumption, any nonuniformities in
the relative velocity wy result in the same
nonuniformities of any component of this velocity,
in particular its circumferential component Wy .

The simplest way of representing the effect of
fluid friction in the rotor passages is by the
displacement thickness of the boundary layers in
these passages. This merely means that, if, for
example, the displacement thicknesses of these
boundary layers would occupy 20 percent of the
rotor passage cross section (at its discharge end),
the relative discharge velocities w, and wy 2 would
be 1/0.80=1.25 times higher than those calculated
without taking fluid friction into account.

On this basis, the practical effect of fluid friction
in a turbomachinery rotor is illustrated by the
following: Consider a standard centrifugal pump
impeller with a discharge velocity diagram like that
shown in figure 2-45. To simplify the example,
assume that ¥y =0. Then

U 8o &o

H Vi v
—H,=cpy 2% Vuat (2-149)

where the asterisk indicates a velocity determined

according to the one-dimensional theory without
any consideration of fluid friction. The head

coefficient is

Yy
U,
U,2

3%

Cpy= (2-150)

For siandard, well-designed centrifugal pumps
with specific speeds near 0.1 (1700), the head
coefficient Cy has been found empirically to be
cqual to or slightly less than 0.8, depending
somewhat on the way wj is related to the vane
shape.

In this example, Cy is assumed to be 0.78. From
the velocity diagram shown in figure 2-51, it is
evident thai



Figure 2-51.—Effect of skin friction in rotor passages on

discharge velocity diagram.
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(2-151)

For standard centrifugal pumps of the type
considered here, V27U, is slightly larger than 0.5.
When it is assumed that Vg ,/U;=0.55 and
Cy;=0.78, equation (2-151) yields wa/w3=1.525.

If this ratio between the actual (average) relative
velocities and those determined from one-
dimensional theory is assumed to be entirely due to
fluid friction in the vane channels, the ratio of the
channel discharge cross scction reduced by the
displacement thickness of its boundary layer Ay to
the actual channel discharge cross section A is
Ay 1
Z/ = | 535 =066 (2-152)
This figure would imply a very nonuniform relative
velocity  distribution. However, the foregoing
assumption that the entire difference between the
one-dimensional and the actual relative velocity is
due to channel friction is somewhat unreasonable,
since the finite vane spacing should lead 1o some
reduction in head on the basis of frictionless flow,
as discussed in scctions 2.6.3.4 and 2.6.3.5.
Assuming that approximately half of the difference
between wyy p and wi, 5 is due to fluid friction, one
arrives at the result

4{:0.82 (2-153)
A
which is reasonable as far as the friction-induced
nonuniformities of the relative flow are concerned.
The suggestion that some of the departures from
the one-dimensional, ideal-flow behavior are due to
fluid friction and some are due to the two-
dimensional characteristics of a frictionless flow is
certainly reasonable and is not likely to lead to

§2.6.3.6-2.6.3.7

conflicts with experience. However, a theoretical
prediction of the effect of channel friction on the
rotor head is not possible on the basis of present
knowledge. All that can be said is that fluid friction
must be expected to have an effect on the rotor
head, an effect over and above its effect on head
losses by friction in the machine. An exception to
this statement are rotors with axial, radial vanes on
the discharge side, so that the relative flow has no
substantial peripheral component, and its dis-
tribution, therefore, no significant effect on the
rotor head.

The example just given leads to the conclusion
that, with combined ideal-flow and fluid friction
effects, the relative discharge flow has on the
average about a 10-percent-thick displacement
boundary-layer thickness all around the discharge
end of the vane channel (but probably a much
thicker boundary layer on the low-pressure side of
the vanes than on the other channel walls). While
this does not imply only minor effects of fluid
friction, it contradicts any contention implying that
even efficient centrifugal pump impellers might
have very nonuniform relative velocity distri-
butions, perhaps with separation. Again these
conclusions cannot be drawn for rotors with
straight radial (and axial) vanes at their discharge
sides.

Thus, while the present considerations on the
effects of fluid friction do not lead to any
significant quantitative results, they do permit some
fairly dependable qualitative conclusions which
may be of value for the design engineer.

2.6.3.7 Effect of rotation on fluid friction. — The
idea that rotation of a system should have an effect
on real flow effects such as fluid friction and
turbulence is fairly old. The thought of in-
vestigating such flows experimentally originated at
least SO years ago at Prandtl’s institute for flow
research in Goettingen, Germany. This writer is not
aware of any major results of these early attempts
to answer this problem.

The reason for interest in this field presumably
stems from the fact that most real flow effects are
intimately connected with vorticity, which must be
expected to interact with the inherent vorticity or
the relative flow in a rotating system. No doubt the
potential importance of this interaction for the field
of turbomachinery was recognized by early pioneers
in this field. However, this writer is not acquainted
with any publications on this particular subject
prior to his own brief remarks in section 66 of
reference 14, which cover only the intuitively
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obvious aspects of this problem. More recently a
number of investigations have been devoted to this
problem. In reference 31, Johnston presents not
only a review and an extensive bibliography of this
subject, but also the results of his own theoretical
and experimental investigations, which clarify the
matter effectively and correct the earlier, over-
simplified consideration by this writer (ref. 14).

In conformity with the general scheme of this
compendium, the following presentation gives only
those aspects of the problem which this writer has
judged to be of value for the design engineer. The
old concepts based on the relation between
boundary-layer and relative flow vorticities are
briefly reviewed, and then these concepts are
corrected on the basis of Johnston’s work (ref. 31).
Some effects of rotation on separated flow and on
secondary motions in radial-flow pump rotors are
outlined. For a more complete study, the reader is
referred to reference 31 and to some of the
publications listed therein.

Figure 2-52, taken from reference 14, compares
the direction of the vorticity in the boundary on the
low-pressure side of the vanes with the vorticity of
the relative flow. These two vorticities have op-
posite directions in the conventional config-

Vorticity due to
boundary friction 7
4 Rotation

/

~ Vorticity of
| relative flow
4

S o
Z” '~ \Vorticity of - Vorticity due to

relative flow | boundary friction
@ 1 (b
Vorticity of « Vorticity of
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due to ;
boundary , P
friction 4 “potation boundary
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(a) Outward-flow pump rotor. (&) Inward-flow turbine rotor.
(c) Outward-flow turbine rotor. (d) Inward-flow pump rotor.
Figure 2-52. — Relation between vorticity in boundary layer or

separated region and vorticity of relative flow in radial-flow
rotor.
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urations of the outward-flow pump (fig. 2-52(a))
and the inward-flow turbine (fig. 2-52(b)), whereas,
in outward-flow turbines (used in torque converters
and Ljungstroem turbines) (fig. 2-52(c)) and in
inward-flow pumps (fig. 2-52(d)), these two
vorticities have the same direction. From this
comparison, the writer drew the premature
conclusion that, in conventional pump and turbine
rotors, the boundary layer on the low-pressure side
of the vane may be reduced in thickness, with a
corresponding reduction in the danger of
separation, as compared with the boundary layer of
a vane in a straight system of parallel vanes (axial-
flow cascade). The opposite conclusion was drawn
for the unconventional configurations (figs. 2-52(c)
and (d)). In reference 14, it is shown that these
conclusions can be confirmed analytically by
considering the effect of turbulent velocity
fluctuations under the influence of Coriolis forces
in a rotating stream, if cross-stream velocity
gradients in the relative flow are disregarded. This
is, of course, a serious omission in considerations of
boundary-layer flow.

The principal difference between the first
considerations by this writer and those by Johnston
is that the latter considers cross-stream velocity
gradients in a rational stability analysis of the
boundary layers; for normal boundary-layer flow,
this method leads to conclusions opposite to those
quoted from reference 14.

Before the principles of Johnston’s analysis are
described, another consideration deserves atten-
tion. In a private communication to this writer,
Johnston pointed out that the vorticity in a reason-
ably orderly, turbulent boundary layer is by at least
one order of magnitude greater than the distributed
vorticity of the relative flow. Therefore the latter
cannot be expected to have a significant influence
on boundary-layer behavior. This correct remark
leads this writer to apply figure 2-52 to the wake
regions formed in connection with separation of the
boundary layers, rather than to normal, thin
boundary layers. The suction-side boundary layers
are shown in figure 2-52 so thick as to suggest this
interpretation. The average vorticity in a wake is, of
course, much lower than in a normal boundary
layer and may indeed be influenced by the vorticity
of the relative flow. This reasoning can be further
illustrated by using the very conventional, though
highly idealized, way of representing the fluid
motions in a separated flow region by a single, flat
vortex, as shown diagrammatically in figures 2-53
and 2-54. The direction of the friction-induced
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vortex is evidently opposite to that of the vorticity
of the relative flow. Furthermore it is easy to show
that the Coriolis forces tend to oppose the vortex
motion in the separated region. This effect can be
made plausible by referring to figure 2-53, in
particular to the wake flow from point B’ toward
point A. This flow evidently has a greater
momentum in the direction of the rotation of the
rotor than the wake flow from A to B or the flow
outside the separated region. Such a momentum
would require the application of a greater force in
the direction of the rotor motion than existing
normally in a separated region. The same argument
could be used if the single vortex in the separated
region were replaced by a row of vortices turning in
the same direction as the single vortex shown in
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figure 2-53, and it applies also to a vortex in a rotor
with radial blades, as shown in figure 2-54.

Alternatively one could, of course, consider the
fluid in the separated region to be at rest relative to
the rotor. In this case, the separated region could be
in equilibrium with the adjacent active flow to
approximately the same extent as a separated region
on a stationary body, such as a stalled airfoil in a
wind tunnel. Certainly no real equilibrium exists in
the latter case, and with respect to any induced
turbulent motions in this region of a rotating
system, the Coriolis forces would have the same
effect on individual vortices as described
previously.

It can be concluded that the vorticity of the
relative flow in radial-flow rotors must be expected
to have a direct effect on the flow in separated
regions. In figures 2-52(a) and (b), the relative-flow
vorticity opposes the friction-induced vorticity in
the separated region and probably destabilizes this
region more than it is in connection with a stalled
airfoil in a wind tunnel. The opposite should be true
for figures 2-52(c) and (d). No statement can as yet
be made regarding the resulting actual behavior of
turbomachines.

We now return to the effect of rotation of the
system on the behavior of boundary layers before
separation. Although the following presentation is
based on reference 31, this writer must assume full
responsibility for the form of this presentation,
which is not nearly as detailed as the Johnston
paper because it serves a different purpose.

In a system rotating at a uniform angular velocity
w, a mass m moving radially relative to the system
at a velocity w, must exchange with its surroundings
a so-called circumferential Coriolis force

Cy=2maww, (2-154)

Since this force produces the change in absolute
moment of momentum connected with a radial
motion in the rotating system, the force exerted by
the surroundings on the mass m points in the
direction of the circumferential motion of the
system. The reaction to this force exerted by the
mass on its surroundings is, thus, directed opposite
to the circumferential motion of the system and, in
the absence of constraints keeping the mass on a
radial path relative to. the system, causes a
circumferential acceleration of the mass relative to
the system in a direction opposite to the circum-
ferential motion of the system.
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In the same system, the same mass moving
relative to the system at a circumferential velocity
wy exchanges with its surroundings a radial
Coriolis force
Cr=2muwwy (2-155)
Since this force is due to centrifugal forces, the
body exerts a radial outward force on its
surroundings if wy;is directed in the direction of the
circumferential motion of the system and, in the
absence of constraints keeping the mass at constant
distance from the center of rotation, causes a radial
outward acceleration of the mass relative to the
system. If wy,is directed oppositely to the motion of
the system, the force and resulting acceleration are
radial and inward.

Equations (2-154) and (2-155) are now applied to
the flow in radial-flow rotors of turbomachinery.
Figure 2-55 shows the relative flow in a radial-flow
pump rotor with straight radial vanes (the case
primarily considered by Johnston). All relative
velocities are radial, except turbulent fluctuations.
All parts of the fluid encounter circumferential
Coriolis forces in accordance with their nonuniform
radial velocity w.

A fluid particle with mass m is displaced (by
turbulence) in relation to its radial path from Ato B
(toward the vane) and carries its radial momentum
and velocity w4 with it. (The very same conclusions

Rotation of
vane system
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Figure 2-55.—Effect of rotation of radial-flow pump
system with radial vanes on stability of vane boundary
layers.
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would be reached by considering displacements in
the opposite direction, i.e., away from the
boundary.) At B it has a greater radial velocity than
the average of the surrounding fluid by Aw
=w,4 — wpg. It, therefore, exerts on its surroundings
a greater Coriolis force than the surrounding fluid
by

ACy=2muw Aw (2-156)
where the subscript r is dropped because there are
only radial relative velocities. Since this force is not
in equilibrium with the forces (pressure differences)
in its surroundings, the particle is accelerated in the
direction of ACy. Since Aw is positive for the
assumed displacement toward the flow boundary
(vane), AC, and the resulting acceleration of the
particle are directed against the direction of
rotation. Figure 2-55 shows that this tends to return
the particle to its original position at the trailing and
low-pressure side of the vane and to remove it
farther from its original position at the leading and
high-pressure side. This means turbulence is
suppressed, that is, the boundary-layer flow is
stabilized at the trailing and low-pressure side and
destabilized at the leading and high-pressure side.
Since boundary-layer turbulence is essential for
preventing separation, it follows that the danger of
separation is increased by the Coriolis forces
(system rotation), because separation can generally
be expected only on the low-pressure side of the
vane. Recall that this conclusion is just the opposite
from that drawn by this writer from the relation
between boundary-layer and relative-flow vorticity
shown in figure 2-52. It is of interest to observe that
the new conclusion was confirmed by Johnston
experimentally by observing the reduction in
turbulence on the low-pressure side of a rotating,
radial channel.

Figure 2-56 shows that the same conclusion can
be reached with respect to the relative flow in a
radial-flow pump rotor with backward-bent vanes.
As in the previous case, turbulent fluctuations are
assumed to displace the mass m from A to B, that
is, toward the blade surface. The opposite
assumption would lead to the same results.

In considering this figure, observe that the
relative flow is directed against the rotation of the
system. Hence the Coriolis forces resulting from the
peripheral component Awy; of the relative flow are
directed radially inward; specifically these forces
are those connected with the difference in relative
velocity between position A and the perturbed
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low-pressure side
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Figure 2-56. — Effect of rotation of radial-flow pump system
with backward-bent vanes on stability of vane boundary
layers.

position B and are associated with a local increase
in the backward relative velocity Aw. Thus, in
comparison with equation (2-155),
AC,= =2mw Awy (2-157)
It should be noted that Aw,is considered positive if
it increases the magnitude of wy in spite of the fact
that wy is here always negative.

The ACy component points in the same direction
as in figure 2-55. The AC vectors are plotted in
figure 2-56 at a much larger scale than in figure
2-55, where no vectorial addition is required. This
does not mean a difference in physical magnitude.

It is now desirable to extend the conclusion
reached previously to other configurations. First
convert the configuration shown in figure 2-55 to
turbine operation simply by reversing the direction
of the radial flow. The direction of rotation is kept
the same, so that leading and trailing vane sides also
remain the same. However, what was the low-
pressure side becomes the high-pressure side and
vice versa, since, as is obvious, in a turbine, the
force acting on the vane (from the high- to the low-
pressure side) must have the same direction as the
motion of the rotor. (The opposite is necessarily
true for pumps.) When the direction of the through
flow alone (of w and Aw) is reversed, the direction
of the Coriolis force difference must also be
reversed. Thus increased stability (reduction in
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turbulence) remains connected with the (changed)
low-pressure side, and the opposite is true for the
(changed) high-pressure side.

Changing the system of figure 2-56 to turbine
operation (according to fig. 2-52(b)) would require
a reversal in direction of system rotation as well as a
reversal of the relative flow w. Thus the Coriolis
forces AC would retain their directions, and the
stable and unstable sides would remain where they
are; that is, the low-pressure side would continue to
be the stable side with reduced turbulence, and the
high-pressure side the unstable side with increased
turbulence, since the low-pressure and high-
pressure sides would remain the same (because of
the reversal in the direction of rotation).

Next, in connection with figures 2-56 and 2-52(c),
consider operation of an outward-flow turbine. The
directions of relative flow and rotation would
remain the same, and therefore, the stable and
unstable sides also. However, high-pressure and
low-pressure sides would be reversed, so that the
boundary layer on the low-pressure side would be
unstable (turbulence would be increased), a
condition which is favorable for the prevention of
separation, and the boundary layer on the high-
pressure side would be stable (turbulence would be
decreased). (High efficiencies should be obtainable
with this configuration.)

Finally, in connection with figure 2-56, consider
an inward-flow pump of the general arrangement
shown in figure 2-52(d). In this case, the directions
of relative flow and rotation would have to be
reversed from those shown in figure 2-56, and the
stable and unstable boundary layers would be left
on the same sides as shown. However, since this is
still pump operation with reversed direction of
rotation, the high-pressure and low-pressure sides
would be reversed from those shown, so that the
unstable (high-turbulence) boundary layer would be
placed on the low-pressure side (favorable for the
prevention of separation), and the stable (low-
turbulence) boundary layer would be placed on the
high-pressure side (skin friction would be reduced).
This configuration may lead to renewed con-
sideration of the inward-flow pump in spite of its
unfavorable overall stability of operation at
reduced rates of flow.

In summary, then, the conventional outward-
flow pump and inward-flow turbine are less
desirable regarding boundary-layer growth and the
onset of separation (stall) than the unconventional
outward-flow turbine and inward-flow pump.
However, after the onset of separation, conven-
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tional outward-flow pumps and inward-flow tur-
bines may be better than their unconventional
counterparts. For example, if a highly efficient
inward-flow pump could be developed, this pump
might have exceedingly unfavorable stall char-
acteristics.

2.6.3.8 Friction-induced secondary flow.—In
closing the discussion on radial-flow rotors, we now
consider briefly the secondary fluid motions in such
rotors, just as done at the end of the section on
axial-flow rotors (sec. 2.5.7). In agreement with the
principle used there, only secondary motions
produced by boundary layers are considered at this
point, whereas secondary flows induced by vorticity
in the main stream are discussed in section 2.7,
together with the origin of the vorticity in the main
stream.

Mixed- or conical-flow rotors with a strong axial-
flow component have, of course, secondary flows
quite similar to those of axial-flow machines, which
are described in section 2.5.7 and are not further
considered here. The present discussion is limited to
secondary flows, which, because of the differences
in geometric configuration, do not exist in axial-
flow machines.

The secondary flow in the spanwise end
boundary layers from the high-pressure toward the

Component of Component of
r system motion T system motion
(/ \ ;\\ ;:f/\ (\5
e AN
/7 N\ }i{Stationary 177N FNFE
1 end wall

Section A-A with Section A-A with
semiopen end both shrouds
walls rotating

low-pressure side of the vane channel (shown for
axial-flow systems in fig. 2-39) exists also in radial-
flow rotors and can in principle be explained in the
same manner as for axial-flow systems. For radial-
flow systems, it is easier to explain this secondary
motion by the Coriolis forces. Refer, for example,
to figure 2-55; the circumferential Coriolis force in
the end zone is lower than that in the midsections,
because w is lower in the end zone. Since the
circumferential pressure difference across the
channel is dictated by the Coriolis forces in the
midsections, the reduced Coriolis forces in the end
zones cannot sustain this pressure difference
without the fluid being accelerated from the high-
pressure side toward the low-pressure side of the
channel. This phenomenon may well be called
overturning of the end-layer fluid, as it is for axial-
flow machines. The same argument holds for radial
inward flow in a turbine rotor.

Figure 2-57 shows the same secondary flow for a
pump rotor with backward-bent vanes. The reasons
for this flow are the same as for the flow between
radial vanes except that components of both the
relative flow and the Coriolis forces must be
considered.

The outward motion of the boundary layer near
the rotating end walls can, of course, be understood

fa Approximate flow near stationary wal}

«jr Approximate flow near center of closed channel
/(’ . . .

e Approximate flow near rotating side wall

/

Figure 2-57. — Secondary flow in radial-flow pump rotors with backward-bent vanes. (Same type of flow exists also in rotors

with straight radial vanes.)
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here intuitively as centrifuge action on the fluid,
which is dragged along by turbulent friction of the
rotating shrouds. (This consideration is funda-
mentally not different from that viewing the
Coriolis forces as resulting from the friction-
induced boundary layer on the end walls.) The
resulting secondary flow pattern in a closed vane
channel (with both shrouds rotating) is principally
not different from the familiar secondary flow in a
curved duct or elbow relative to the high-pressure
and low-pressure sides of the duct. It is reversed in
direction relative to the concave and convex sides of
the duct, and this change demonstrates the effect of
rotation on the flow in this duct.

2.7 Three-Dimensional Flow
Problems of Turbomachinery, Their
Two-Dimensional Solutions, and
Flow With Distributed Vorticity

2.7.1 Introduction

In sections 2.5 and 2.6, the inlet and discharge
velocity diagrams are assumed to be given for every
meridional stream surface considered. In other
words, both the meridional and the circumferential
velocity distributions at the inlet and discharge of
the vane system considered are assumed to be
known.

The only rational basis for the knowledge of
these velocity distributions is a flow with uniform
energy at the inlet to the first vane system and
uniform changes of the energy (i.e., addition or
subtraction of head which is uniform across the
stream) in every rotating system of the machine.
Under the assumption of frictionless flow for both
the meridional and circumferential velocities, this
reasoning leads to so-called irrotational velocity
distributions. The meridional velocity distribution
is determined by equation (2-4) of section 2.2 and
may be found by the graphical construction shown
in figure 2-3. The circumferential velocity follows
the law of constant angular momentum (r¥y
=constant) across the stream and changes in the
rotating systems by constant steps in angular
momentum according to Euler’s turbomachinery
equation in the form of equation (2-18). A flow of
constant angular momentum can easily be shown to
satisfy the same differential equation (eq. (2-4)) as
the meridional flow.
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Sections 2.2 and 2.3 mention that both flows may
differ from the irrotational velocity distributions
just discussed, but do not mention any general laws
for such departures except that such departures are
expressed for the meridional flow by its vorticity in
the form of equation (2-6). Departures of the
circumferential flow from the law of constant
angular momentum can also be expressed by the
vorticity of this flow, since

_ aVU VU _ 1 a(VUr)
S N (2-138)
so that
aVyr
’, = (ag) (2-159)

which obviously describes the change in the angular
momentum V¥, r as a function of the distance r from
the axis of rotation. Appendix 2-A shows that the
vorticity { is a vector normal to the plane of the
vortex flow. This direction is here the axial
direction and is designated by the coordinate z. The
axial vorticity component ¢{; is a special case of the
vorticity component {,, in the direction of the
meridional flow, which is used in section 2.7.3.

A nonuniform angular momentum across the
stream can be generated by any suitably designed
vane system, since there is no general law pro-
hibiting such a design. However, a circumferential
flow with nonuniform angular momentum can
easily be shown to have by itself a nonuniform
energy distribution. If the vane system is assumed
to be stationary and to receive an inflow with
uniform energy distribution, it follows (for
frictionless flow) that the discharging meridional
flow cannot have a uniform energy distribution in
connection with a circumferential flow of non-
uniform energy, since the resultant, three-
dimensional discharge flow must have the uniform
energy distribution dictated by the incoming flow.
This reasoning leads for the first time to a necessary
interrelation between the circumferential and the
meridional flow in a turbomachine, in contrast to
the independence of these two flow components
previously assumed. This interrelation constitutes
the principal subject of this section and is shown to
exist also if the flow of nonuniform angular
momentum is generated by a rotating vane system.

There is one additional reason why the
meridional flow may differ from the irrotational
flow pattern: In the area swept by the rotor vanes or
covered in a meridional section by the stator vanes
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(where all points of these vanes are rotated into one
meridional plane), there may very well be a
component of the vane forces parallel to the planes
of the meridional flow. In other words, vanes may
not only exert circumferential forces on the flow
according to their primary intent (Euler’s
turbomachinery eqs. (2-10) to (2-18)), but also
forces lying in meridional planes, that is, in
directions having no circumferential components.
These forces exist only if the vanes are inclined
against the radial and axial (meridional) planes and,
for discrete vanes, would appear to be exerted by
radial sections through the vanes (fig. 2-58). When
the fiction of an infinite number of vanes is used for
the meridional flow picture, this blade force on the
meridional flow becomes distributed over the entire
radial and axial planes of the meridional flow. This
section shows that this vane action on the
meridional flow can be evaluated as a distributed
vorticity of this flow.

All considerations of this section are based on the
assumption of frictionless flow with complete axial
symmetry (infinite number of vanes), except where
departures from this rule are explicitly indicated, as
in the introductory part of section 2.7.2 and, of
course, in section 2.7.5, on secondary fluid
motions.

2.7.2 Effects of Spanwise Nonuniform Circulation

The effects of spanwise nonuniform circulation
are demonstrated first on the basis of the particular

\\\ ; Radial component
\ of vane force

Axial compo- [
nent of vane force -~

Ve
—_— [ e [
i

Figure 2-58. — Vane forces in meridional plane.
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problem which, at least 35 years ago, gave rise to a
rational investigation of the problems covered in
this section. In the development of high-
performance axial-flow compressors (for aircraft
engines), it was obviously desirable to use the
highest possible peripheral velocities of the rotor.
At the same time, it was believed to be necessary to
limit the relative inlet velocity to the rotor vane
system to values below the acoustic velocity of the
air under local conditions (a contention later
contradicted by further developments, although it is
still considered desirable to have only a limited
excess of the acoustic velocity). In any event, it was
desirable to minimize the relative velocity at the
rotor inlet (which may also be true for hydro-
dynamic rotors for reasons of cavitation). It was
natural to give the flow entering the rotor an initial
rotation in the direction of the rotor motion and
thus effectively reduce the relative inlet velocity.
(Note that, in the absence of such prerotation, the
peripheral component of the relative inlet velocity is
wy,1= — U], whereas, with prerotation, it is
wy,1= —(U; = Vy 1), where Vy, is the peripheral
component of the absolute velocity entering the
rotor.) Usually the peripheral component wy, | is
the dominant component of the relative inlet
velocity wj, so that reductions in the latter are
nearly proportional to reductions in wy, ;.

Assume that, for the purposes of reducing wy,
one chooses at the tip section ¥y, 1 =0.25 U, so that
wy 1= —0.75 U). Assume further that the inlet hub
diameter is one-half of the maximum inlet diameter
and that the blades of the axial-flow compressor
start from this hub diameter. Thus U; = U,/2, and
assuming for the prerotation the law of constant
angular momentum gives

Vuin=2Vy,

Therefore

VU,I,h _ 0.50 U] _

Uy 0500, =1

that is, the flow enters the hub section relative to the
rotor axially, which gives this vane section an
entirely forward turn and reduces static pressure.
This is obviously undesirable for a machine
intended to increase the static pressure of the
medium.

If, instead, the pretotation could have (for
example) the velocity distribution of a solid body
rotation



Vuin _Uin _
Voa U on

one. would find (according to the previous
assumption regarding Vy,;/U)), instead of equa-
tion (2-160),

Yurn - Yua _g o

Uin U
which is quite acceptable for the design of the hub
section. There is, therefore, a strong incentive to
depart for the inlet guide vane system from the
irrotational velocity distribution of constant
angular momentum.

If it is assumed that the inlet guide vane system
receives a flow of uniformly distributed energy and
that the angular momentum of the oncoming flow
is zero (very reasonable assumptions), the
previously mentioned problem has to be solved for
finding the meridional discharge velocity
distribution, which, together with the assumed
peripheral discharge velocity distribution (solid
body rotation)

(2-160)

Vo= Voo (2-161)
T

satisfies everywhere Bernoulli’s equation. Here the

subscript o refers to the outside, discharge diameter

(or radius) of the inlet guide vane system, and the

meridional flow at its discharge is assumed to be

axial.

The problem can be solved on the basis of the so-
called condition of radial equilibrium, which in its
simplest form can be derived as illustrated in figure
2-59. The figure simply relates the radial change in
static pressure to the centrifugal forces per unit area
in a plane, rotating flow. This relation is

(p+ %dr)(r+dr) do —p dr da —pr do

2
=pr duo drKrQ

which reduces to

op V%/
> =P (2-162)
When combined with Bernoulli’s equation in a
plane rotating flow, this equation simply leads to
the familiar law of radially constant angular
momentum Vyr=constant. Generally, for any
prescribed relation between ¥y and r, it will lead to
a definite relation between the static pressure p and
the distance r from the center (axis) of rotation.

Figure 2-59.— Derivation of condition of simple radial
equilibrium.

For the flow in a strictly axial-flow machine,
where the radial velocity component is zero, the
resulting velocity is ¥'= V%/+ Vﬁ, where V is the
axial velocity component. Hence, when the effects
of differences in elevation are neglected, Bernoulli’s
equation appears in the form

pV?

2
5 (2-163)

D+ =p+g(V,2J+ V§)=constam
If, by a prescribed relation between Vy and r,
equation (2-162) gives a relation between p and r, or
p and Vy, the static pressure p can be replaced in
equation (2-163) by a function of r or V. Since Vy
is assumed to be a known function of r, equation
(2-163) yields V; as a function of r, that is, it gives
the axial velocity distribution, which, together with
the given Vy distribution, satisfies Bernoulli’s
equation.

In section 3.3.4.2 of chapter 3, this problem is
solved for the case of solid-body rotation where V(;
is proportional to r. The only general solution that
can be suggested without a given relation between
Vy and r is one based on the vortex laws by
Helmholtz (see sec. 2.6.3.1 and appendix 2-A),
particularly these laws in the form involving the
concept of trailing vorticity, used by Prandtl to
derive his famed wing theory. It becomes evident
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later in this section that this solution also satisfies
Bernoulli’s equation.

Figure 2-60 shows one vane of an axial-flow vane
system such as may be used at the inlet to a pump or
compressor. For simplicity, it is assumed that the
flow enters the system in the axial direction with
uniform velocity and leaves the system with radially
increasing circulation, so that F,>T'>T;. Accord-
ing to the treatment by Thoma described in section
2.5.2 and figure 2-11 (which applies also to
stationary vane systems), the vane circulation must
also increase radially, since, with axial inlet flow,
Fy,=NT, ,, I'=NT, (at any radius), and [;=NT,.

According to Helmholtz’ vortex laws and
Prandtl’s wing theory (appendix 2-A), between the
section with circulation T, , and the section with
circulation Iy, the vane must shed a trailing vortex
with circulation Al',=T, ,-T,, and this vortex
vector must be parallel to the direction of the flow
leaving the vane system. This means that the fluid
motions or velocities representing the trailing
vorticity (¢ in fig. 2-60) must be normal to the
direction of the flow leaving the vane system. It is
this fact on which the solution of this particular
flow problem is based.

Figure 2-60 shows a second trailing vortex with
circulation AT;=T,~T, ;, but in reality the vane

Flow leaving

system-
AY

circulation I';, and the circulation I' in the flow
downstream of the system change continuously
from hub to tip, so that one should approximate
this by a large number of trailing vortices, since
actually each vane sheds a continuous vortex sheet.

Consider again the fiction of two trailing vortices
per vane; the axial view of the entire trailing vortex
system is shown in figure 2-61. Evidently

I,-T'=N arl,
(2-164)
I -T;=N AT}

since, according to section 2.5.2, the circulation
about any contour (such as that formed by the outer
circle with radius r, and the middle circle with
radius r) is equal to the sum of all circulations inside
the contour.

Figures 2-60 and 2-61 imply that there exists a
flow field with circumferential and radial motions
between the trailing vortices. The corresponding
flow field between two trailing vortex sheets is
shown in figure 2-62, which may be regarded as a
section normal to the vortex sheets (a slightly
twisted surface) or as a section normal to the axis of

Flow approaching
system, assumed
to be axial

and uniform-,

Figure 2-60. — Relation between vane circulations and circulation of flow leaving vane
system. (., >T,>T, ; T,>T>T; T=AT,; aT, = I.,—Ty,aAr=r,-T,.)
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Figure 2-61. — Circulations in flow leaving vane system.
(I,>I'>T; NAl,=T,—T; NA[,=T-T,)

Figure 2-62.— Approximate flow with finite vane spacing
induced by trailing vortex sheets.

rotation as in figure 2-61, or finally (with a slight
distortion) as an axial and radial plane section
showing the effect of the trailing vortex sheets on
the meridional flow. These flow pictures must be
superimposed onto the flow that would exist
without any trailing vorticity, that is, the irrota-
tional flow with radially constant vane circulation.

The flow shown in figure 2-62 is too complex to
be used in the design of turbomachines. For this
reason, one uses the familiar fiction of an infinite
number of frictionless vanes. When this is done, the
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right and left parts of the flow field in figure 2-62
(close to the vortex sheets) with their radial velocity
components vanish, the effect of the now con-
tinuously distributed axial vorticity {, (fig. 2-60) is
confined to the peripheral velocity component, and
the effect of the (continously distributed)
circumferential vorticity component {; is confined
to the axially symmetric meridional flow.

The distributed axial vorticity {; can easily be
calculated for any radial step, say from r to r,, by
the relation among circulation, vorticity, and area
inside the contour of the circulation (eq. (2-A-26)):

r,-T
fo= — 20—
7r(r(2)—r2)
The vorticity of the meridional flow ¢y is
obtained from {, by the condition that the total

trailing vorticity is parallel to the flow leaving the
vane system, so that

(2-165)

Su_ Yy (2-166)

The meridional velocity V is first approximated by
its average value according to the condition of
continuity. Then the nonuniform distribution of V,
is determined from {y by equation (2-6) and the
construction shown in figure 2-4, which is, of
course, particularly simple for axial-flow vane
systems, where the radius of curvature R of the
meridional streamlines is (in first approximation)
infinite. The values of V, so determined may then
be substituted into equation (2-166) and the process
repeated. The integration shown in figure 2-4
should start approximately in the area center of the
duct, where one can assume V, has its average
value, used for the first approximation. After
completing the V, curve on this basis, one can
correct it to comply more accurately with the
condition of continuity as described briefly in
section 2.2.

Fortunately there exists a simpler graphical
method for deriving the V, distribution for a given
Vy distribution: Starting again approximately from
the area center of the duct, approximate the
discharge velocity diagram at that radius r4 by the
average meridional velocity (V, 4, = Q/A,,, see sec.
2.2) and the prescribed local circumferential
velocity V. The end point of the resultant velocity
vector Vis point A in figure 2-63. Then draw a new
velocity diagram for a nearby radius rg according to
the assumption that the entire flow is irrotational,
that is, that the circumferential velocity satisfies the
law of constant angular momentum
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Figure 2-63.—Change in vane discharge velocity (o
account for trailing vorticity of axial-flow vane system

where V,, =1V..
Yip_a (2-167)
Vua rs

where the asterisk signifies that this is not the true
value of Vy; g, since a distribution departing from
the law of constant angular momentum is
prescribed. The fictitious meridional velocity at
radius rg is obtained in a similar manner for an
irrotational meridional velocity distribution

Prescribed distribution of
Vy=0 circumferential velocity ~

VU =constant x r

according to equation (2-4). For straight meridional
streamlines, V;.B: V. 4. The end point of the new,
fictitious velocity vector is marked B*.

The true peripheral velocity ¥y, g at radius rg is
prescribed. Also known is the fact that the velocity
departures from the irrotational velocities (i.e., the
velocities of the trailing vortex flow) are normal to
the discharging flow in order to give the vorticity
vector the same direction as the discharging flow.
This is accomplished (for a small radial step) by
swinging the velocity vector drawn to point B*
about its origin O to a new point B where the
circumferential velocity has the prescribed value
Vy.p- This construction satisfies not only the vortex
law but also Bernoulli’s equation to the extent that
the true static-pressure difference between r4 and rg
can be approximated by the pressure difference for
irrotational flow, which is known to satisfy
Bernoulli's equation. (Consider that the magnitude
of the velocity is not changed in going from B* to
B.)

Figure 2-64 shows a succession of these steps for
the peripheral as well as the meridional velocity
components. Every step requires, and is based on, a
velocity diagram such as that shown in figure 2-63.
This example solves the inlet vane system problem
described previously.

The same method applies in principle also to
rotating vane systems, except that the trailing

Distribution of
v_ - Meridional velocity
z

Figure 2-64. — Stepwise determination of meridional velocity of axial-flow vane system.
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vorticity is parallel to the relative velocity leaving
the vane system, so that, in place of equation
(2-166), one must use

sy _wy
$: W,

(2-168)

The principal reason for considering the
foregoing graphical solution is the clarity with
which it illustrates the effect of vorticity (the effect
of departures from the potential velocity
distribution) on the flow. For the practical solution
of flow problems with vorticity, the graphical
method should be used only for small changes in the
distance from the axis of rotation. For appreciable
changes in this distance, an analytical solution,
presented in the next section, is better than the
graphical solution, particularly if the meridional
streamlines are curved. The practical execution of
such a flow problem is described in chapter 4,
section 4.4.1.

2.7.3 General Solution of Problem of Flow With
Vorticity in Turbomachinery

The effectiveness of the concept of vorticity €n
permitting a relatively simple solution of the flow
problem discussed in the preceding section leads
one to attempt on the same basis a more general
solution of the problem of flow with vorticity in
turbomachinery.

For the present, the assumption of complete axial
symmetry (i.e., of an infinite number of frictionless
vanes) is maintained. However, the assumption of
irrotational (vorticity-free) inlet flow to the vane
system considered is dropped to permit the appli-
cation of the results obtained to vane systems
behind other systems which may put vorticity into
the stream. This vorticity is, according to the
assumption of complete axial symmetry, uniformly
distributed in the circumferential direction.

The following presentation is based on a solution
of this problem by Leroy H. Smith given in
reference 32 and follows his presentation closely in
principle and in some details.

The objective of the following presentation is not
the solution of a specific problem of flow with
vorticity through a vane system, but rather the
derivation of general equations by which such
problems can be solved in various ways. The
following derivation differs from those given in
references 14 (ch. 26) and 33 by the fact that it is

based on kinematic considerations of flow with
vorticity, which are basic to this problem, whereas
the derivations in these references are based
primarily on dynamic considerations of radial
equilibrium.

The present derivation assumes that the inlet flow
to the vane system is completely known, so that the
inlet velocity and vorticity vectors w; and { in
figure 2-65 are given. The particular meridional
stream surface to which the vector diagrams in
figure 2-65 apply is chosen in such a manner that
the meridional discharge velocity w,, »=V,, > can
be estimated or selected by the condition of
continuity; that is, the chosen flow surface is
located near the average radius of the discharge
cross section. The change in the peripheral velocity
component Awy=AVy is usually given by the
change in angular momentum required from the
vane system considered, although this requirement
is not precise, since, with vorticity, the angular
momentum and its change are not uniform over the
discharge cross section.

It remains to determine the discharge vorticity in
accordance with the vortex laws by Helmholtz (see
appendix 2-A), which may be called the practical
objective of the following considerations.

The velocity and vorticity diagrams shown in
figure 2-65 apply directly to the flow through a
rotating vane system, as is evident from the relative
velocities w; and w,. The same diagrams apply in
principle also to a stationary vane system when the
relative velocity vectors w; and w, are replaced by
the absolute velocity vectors V| and V5.

For the derivations, Helmholtz’s vortex laws are
used in the following form:

(1) The vorticity vector of the flow entering the
system remains connected with the fluid particles.

(2) The vorticity generated within the system has
vectorially the same direction as the flow leaving the
system (trailing vorticity).

(3) The flow through the system obviously
satisfies the condition of continuity.

For incompressible or compressible flow, the first
condition is satisfied by drawing the vorticity vector
divided by the density of the fluid between two
adjacent streamlines within the meridional stream
surface considered (ref. 34). These vorticity vectors
are shown in figure 2-65 between the point 0 and the
line C;B; at the inlet to the system and between the
point 0 and the line C,B; at the discharge from the
system. The scale of {/p and the angular spacing A
are assumed to be so small that the local curvature
of the streamlines considered can be ignored. For
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Figure 2-65. — Velocity and vorticity vector diagram Jor axially symmetric flow through vane system (according to L. H.

Smith, ref. 32).

reasons of axial symmetry, the angular distance A8
between two such adjacent streamlines is constant.

We are now in a position to describe the vorticity
vector diagram shown in figure 2-65. While quite
general in principle, it assumes the existence of a
stationary vane system (such as that discussed in
sec. 2.7.2) in front of the rotating vane system with
the flow characteristics shown in figure 2-65. The
inlet flow to this rotating vane system is, therefore,
approximately that shown in figure 2-64,
specifically that at an intermediate meridional
stream surface, for example, that at radius r4 in
figure 2-64,

It would be natural to think of a uniform energy
input by the rotor to all stream surfaces, which
means A(Vyr)=constant across the flow, that is,
there is no change of the meridional vorticity
component {,,; within the rotor. The result
obtained by this assumption is shown in figure 2-65
by the discharge vorticity vector {;; under the
restriction p; = p;. The aforementioned requirement
that the vorticity vector remain between the same
streamlines leads to an increase in the peripheral
vorticity component from ¢y | to {v.02, which may
not be acceptable, because this increase may lead to
zero or negative meridional discharge velocities at
the maximum discharge radius (see the V,= V.2
distribution in fig. 2-64). This possibility is avoided
by having the rotor add a vorticity A¢ to the flow.
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This addition results at the discharge in a trailing
vorticity A{, which has the direction of w, and of
the streamline at the discharge of the system. It can
be seen from figure 2-65 that the magnitude of A}
can be determined from the vorticity vector
diagram, so that [{y; 2| <|{y ), that is, the departure
of the meridional discharge velocity from the
irrotational distribution is not greater than that
shown in figure 2-64 for the rotor inlet. (The same
could be accomplished by an outward curvature of
the meridional discharge flow, but this is not
significant with respect to the present consid-
erations.)

With the vorticity vectors in figure 2-65
determined by the foregoing or other equivalent
considerations, the law of vortex flow through a
rotating vane system can be derived from figure
2-65 as follows: To satisfy the condition of
continuity, one can write

pIryL dny Wy | =pory dny wy, »
so that

r\Wm,1 _ P2 dny
I‘zwmlz 0 dnl

(2-169)

where r{ and ry are the distances from the axis of
rotation at the inlet and discharge of the vane
system.



It is clear that the ratio on the left side of
equation (2-169) is the ratio of the areas of two
parallelograms in figure 2-65, namely, OA,B,C,
and OA;B,C,.

The areas of the same parallelograms are also
equal to the vector products of the velocity vectors
and vorticity vectors w and {/p. The fact that the
vorticity vector remains within the parallelogram
described by two adjacent streamlines expresses the
fact that the change in vorticity A¢ within the vane
system has the direction of the flow leaving the vane
system wj and, therefore, does not change the
vector product of the velocity and the vorticity.
Thus the ratio of the areas of the two paral-
lelograms OA;B{C; and OA;,B,C; may be written
in the form

G700 X
"1 Wm,i 1/01) X wy
2Wm,2  [($2/p2) X wy

If equation (2-170) is written in the form
- -
1 xwil _ 52X wy @171)
PIMIWm,1  P2NWy 2

it can be broken up into its components:

,(m’]wU,l - fu,lwm,] - f‘m,ZWU,z - f‘U,ZWm,Z (2_172)
P11 Wm,1 P2raWm,2

The subscript m denotes the meridional flow
direction; that is, {, is the vorticity of the
circumferential flow in a section normal to the
meridional flow. The component {, is the vorticity
of the meridional flow.

Finally, when the vorticity components are
expressed in terms of velocities and velocity
gradients, equation (2-172) assumes the form

aVy Vu
[WU'I( on * r/cos <p)l
NG
’ on R 1] P11 W1
_ vy Vu
- [WU'Z( an " r/cos «p)z

Wy Vo 1
+w,,,,;_( on iT)J P2r2Wm,2

(2-173)
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where » is a coordinate normal to the meridional
streamlines, increasing with increasing distance r
from the axis of rotation, and ¢ is the angle between
the meridional streamline and the axial direction, so
that r/cos ¢ is the distance from the axis of rotation
as seen in a conical section normal to the meridional
flow (fig. 2-66). The radius of curvature of the
meridional flow in the radial and axial planes is
designated R. The plus sign in the second term
applies to meridional stream surfaces concave
toward the axis of rotation, so that the centrifugal
forces of the meridional flow are additive to the
centrifugal forces of the circumferential flow (fig.
2-66(a)). Meridional streamlines turning their
convex sides toward the axis of rotation produce
centrifugal forces opposed to those of the
circumferential flow; thus the minus sign applies in
this case (fig. 2-66(b)).

For stationary vane systems, one replaces the
relative velocity w by the absolute velocity V, as
mentioned previously. Thus

-— -—
[1X Vil [Gax VY

= (2-174)
o1 Vmy  p2r2Vm,2

or, in components,

V- Vias—
g-m,l U,] g‘U,le,l — fm,Z U,2 §-U,2Vm,2 (2_175)
o1 Vi, P2r2Vm,2

vy Vu
[VU’]< on * r/cos <p)l
vV, Vp 1
* Vm,]( on i?)l] P17 Vm,l
- Vy, Vu
= [Vu,z( on * r/cos go)z

av, vV, 1
v (%m  Ym) | 1
¥ m,Z( an =R )2] p2r2Vm,2

where it should be remembered that w,,=V,,.

In all equations stated so far in this section, the
subscript 1 applies to one side, say the inlet side of
the vane system considered, and the subscript 2 to
the other side, say the discharge side of the same
vane system.

(2-176)
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Figure 2-66. — Curvature of meridional streamlines.

It is well to remember that the fundamental
equations (2-171) and (2-174) and, therefore, all
equations derived from them express primarily the
facts that any vorticity added by a vane system must
have at the discharge the same (or opposite)
direction as the discharging flow and that the
incoming vorticity remains between corresponding
streamlines, as shown in figure 2-65.

The meridional component of the vorticity added
by the vane system A¢{,, is usually given by a
prescribed change in angular momentum. Some-
times, as in the case of a rotor following an inlet
guide vane system, discussed in section 2.7.2, the
vorticity change of the meridional flow is prescribed
in order to achieve a reasonable meridional dis-
charge velocity distribution. In any event, there are
given restrictions on the vorticity and velocity
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distribution at the discharge of the vane system
considered in addition to the restrictions expressed
by equations (2-171) to (2-176) as well as figure
2-65.

Furthermore the inlet velocity and vorticity
distribution (i.e., one side of all eqgs. (2-171) to
(2-176)) must be given to establish a definite
problem, so that the inlet velocity and vorticity
vectors in figure 2-65 are prescribed. With respect
to the expanded equations (2-173) and (2-176), not
only is one side given, but also, on the other side,
one compornent of the velocities, either Vi or V,,,, is
prescribed. This reduces the solution of the problem
to the determination of the other velocity
component by its vorticity, either

Wy Wy
=2v 17
{m on + r/cos ¢ (2-177)

or

W Vi
o= om Tm .17
Su an R (2-178)

A graphical solution of this problem is presented in
section 2.2 in connection with figure 2-4. The
solution starts from some suitably chosen midpoint
M, where the velocity components Vy, wy, and
Vin = w,, are given or calculated from the condition
of continuity.

Finally, it is also possible to solve many problems
on the basis that the departures from the
irrotational velocity distributions are normal to the
resultant vorticity vector given by figure 2-65 and
equations (2-171) and (2-174). This is the method
described in the preceding section in connection
with a particularly simple probiem. Examples for
the practical execution of these solutions are
presented in chapters 3 and 4 in connection with
definite design problems.

2.7.4 Determination of Off-Design
Operating Characteristics

An important application of the principles of
flow with vorticity in turbomachines is the
determination of the off-design operating charac-
teristics. Even for machines designed for vorticity-
free operation at one particular volume flow rate or
one particular flow coefficient V,,/U, the flow
acquires vorticity if the flow coefficient departs
from its design value. This is particularly true for
pumps where the flow leaves the rotor at more than
one diameter, as it does with axial-flow and mixed-
flow rotors. For simplicity of reasoning, the



following considerations are confined to axial-flow
rotors, but the principles employed apply to mixed-
flow rotors as well.

Figure 2-67 shows the solution suggested. Figure
2-67(a) shows the (ideal) straight-line head-flow
characteristics of three cylindrica